Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T08:37:21.657Z Has data issue: false hasContentIssue false

Cardiac magnetic resonance predictors for successful primary biventricular repair of unbalanced complete common atrioventricular canal

Published online by Cambridge University Press:  18 July 2023

Andrea L. Jones*
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Brian R. White
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Reena M. Ghosh
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Antara Mondal
Affiliation:
Department of Biomedical & Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Steve Ampah
Affiliation:
Department of Biomedical & Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Deborah Y. Ho
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
Kevin Whitehead
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Matthew A. Harris
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
David M. Biko
Affiliation:
Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Sara Partington
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Stephanie Fuller
Affiliation:
Division of Cardiothoracic Surgery, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
Meryl S. Cohen
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Mark A. Fogel
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
*
Corresponding author: A. L. Jones; Email: Jonesa21@chop.edu

Abstract

Background:

Patients with unbalanced common atrioventricular canal can be difficult to manage. Surgical planning often depends on pre-operative echocardiographic measurements. We aimed to determine the added utility of cardiac MRI in predicting successful biventricular repair in common atrioventricular canal.

Methods:

We conducted a retrospective cohort study of children with common atrioventricular canal who underwent MRI prior to repair. Associations between MRI and echocardiographic measures and surgical outcome were tested using logistic regression, and models were compared using area under the receiver operator characteristic curve.

Results:

We included 28 patients (median age at MRI: 5.2 months). The optimal MRI model included the novel end-diastolic volume index (using the ratio of left ventricular end-diastolic volume to total end-diastolic volume) and the left ventricle–right ventricle angle in diastole (area under the curve 0.83, p = 0.041). End-diastolic volume index ≤ 0.18 and left ventricle–right ventricle angle in diastole ≤ 72° yield a sensitivity of 83% and specificity of 81% for successful biventricular repair. The optimal multimodality model included the end-diastolic volume index and the echocardiographic atrioventricular valve index with an area under the curve of 0.87 (p = 0.026).

Conclusions:

Cardiac MRI can successfully predict successful biventricular repair in patients with unbalanced common atrioventricular canal utilising the end-diastolic volume index alone or in combination with the MRI left ventricle–right ventricle angle in diastole or the echocardiographic atrioventricular valve index. A prospective cardiac MRI study is warranted to better define the multimodality characteristic predictive of successful biventricular surgery.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shaddy, RE, Lippincott, Williams & Wilkins. Moss & Adams’ heart disease in infants, children, and adolescents including the fetus and young adult. 10th edn. Philadelphia: Wolters Kluwer, 2022.Google Scholar
Hickey, EJ, Caldarone, CA, Blackstone, EH, et al. Critical left ventricular outflow tract obstruction: the disproportionate impact of biventricular repair in borderline cases. J Thorac Cardiovasc Surg 2007; 134: 14291436. DOI: 10.1016/j.jtcvs.2007.07.052.CrossRefGoogle ScholarPubMed
Cohen, MS, Jacobs, ML, Weinberg, PM, Rychik, J. Morphometric analysis of unbalanced common atrioventricular canal using two-dimensional echocardiography. J Am Coll Cardiol 1996; 28: 10171023. DOI: 10.1016/s0735-1097(96)00262-8.CrossRefGoogle ScholarPubMed
Jegatheeswaran, A, Pizarro, C, Caldarone, CA, et al. Echocardiographic definition and surgical decision-making in unbalanced atrioventricular septal defect: a congenital heart surgeons' society multiinstitutional study. Circulation 2010; 14 122: S20915. DOI: 10.1161/CIRCULATIONAHA.109.925636.Google Scholar
Cohen, MS, Jegatheeswaran, A, Baffa, JM, et al. Echocardiographic features defining right dominant unbalanced atrioventricular septal defect: a multi-institutional congenital heart surgeons' society study. Circ Cardiovasc Imaging 2013; 6: 508513. DOI: 10.1161/CIRCIMAGING.112.000189.CrossRefGoogle ScholarPubMed
Arunamata, A, Balasubramanian, S, Mainwaring, R, Maeda, K, Selamet Tierney, ES. Right-dominant unbalanced atrioventricular septal defect: echocardiography in surgical decision making. J Am Soc Echocardiogr 2017; 30: 216226. DOI: 10.1016/j.echo.2016.10.017.CrossRefGoogle ScholarPubMed
Szwast, AL, Marino, BS, Rychik, J, Gaynor, JW, Spray, TL, Cohen, MS. Usefulness of left ventricular inflow index to predict successful biventricular repair in right-dominant unbalanced atrioventricular canal. Am J Cardiol 2011; 107: 103109. DOI: 10.1016/j.amjcard.2010.08.052.CrossRefGoogle ScholarPubMed
Grosse-Wortmann, L, Yun, TJ, Al-Radi, O, et al. Borderline hypoplasia of the left ventricle in neonates: insights for decision-making from functional assessment with magnetic resonance imaging. J Thorac Cardiovasc Surg 2008; 136: 14291436. DOI: 10.1016/j.jtcvs.2008.04.027.CrossRefGoogle ScholarPubMed
Nathan, M, Liu, H, Pigula, FA, et al. Biventricular conversion after single-ventricle palliation in unbalanced atrioventricular canal defects. Ann Thorac Surg 2013; 95: 20862095. DOI: 10.1016/j.athoracsur.2013.01.075.CrossRefGoogle ScholarPubMed
Banka, P, Schaetzle, B, Komarlu, R, Emani, S, Geva, T, Powell, AJ. Cardiovascular magnetic resonance parameters associated with early transplant-free survival in children with small left hearts following conversion from a univentricular to biventricular circulation. J Cardiovasc Magn Reson 2014; 7 16: 73. DOI: 10.1186/s12968-014-0073-1.CrossRefGoogle Scholar
Altmayer, SP, Patel, AR, Addetia, K, Gomberg-Maitland, M, Forfia, PR, Han, Y. Cardiac MRI right ventricle / left ventricle (RV/LV) volume ratio improves detection of RV enlargement. J Magn Reson Imaging 2016; 43: 13791385. DOI: 10.1002/jmri.25110.CrossRefGoogle ScholarPubMed
Metcalf, MK, Rychik, J. Outcomes in hypoplastic left heart syndrome. Pediatr Clin North Am 2020; 67: 945962. DOI: 10.1016/j.pcl.2020.06.008.CrossRefGoogle ScholarPubMed
Supplementary material: File

Jones et al. supplementary material

Jones et al. supplementary material

Download Jones et al. supplementary material(File)
File 24.7 KB