Skip to main content Accessibility help

Cardiac findings and long-term thromboembolic outcomes following pulmonary embolism in children: a combined retrospective-prospective inception cohort study

  • Hayley S. Hancock (a1), Michael Wang (a2) (a3), Katja M. Gist (a4), Elizabeth Gibson (a2) (a3), Shelley D. Miyamoto (a4), Peter M. Mourani (a5), Marilyn J. Manco-Johnson (a2) (a3) and Neil A. Goldenberg (a2) (a3) (a6) (a7)...


In paediatric pulmonary embolism, cardiac findings and thromboembolic outcomes are poorly defined. We conducted a mixed retrospective-prospective cohort study of paediatric pulmonary embolism at the Children's Hospital Colorado between March, 2006 and January, 2011. A total of 58 consecutive children – age less than or equal to 21 years – with acute pulmonary embolism were enrolled. Data collection included clinical and laboratory characteristics, treatments, serial echocardiographic and electrocardiographic findings, and outcomes of pulmonary embolism non-resolution and recurrence. The median age was 16.5 years ranging from 0 to 21 years. The most prevalent clinical risk factors were oral contraceptive pill use (52% of female patients), presence of a non-infectious inflammatory condition (21%), and trauma (21%). Thrombophilias included heterozygous factor V Leiden in 21%; antiphospholipid antibody syndrome was established in 31% overall. Proximal pulmonary artery involvement was present in 34%. At presentation, nearly half of the patients had hypoxaemia and 37% had tachycardia. The classic electrocardiographic finding of S1Q3T3 was present in 12% acutely; tricuspid regurgitation greater than 3 metres per second, septal flattening, and right ventricular dilation were each present on acute echocardiogram in 25%. Nearly all patients received therapeutic anticoagulation, with initial systemic tissue plasminogen activator administered in 16% for occlusive iliofemoral deep venous thrombosis and/or massive pulmonary embolism. Pulmonary embolism resolution was observed in 82% by 6 months. Recurrent pulmonary embolism occurred in 9%. There were no pulmonary embolism-related deaths. Right ventricular dysfunction was rare in follow-up. These data indicate that acute heart strain is common, but chronic cardiac dysfunction is rare, following aggressive management of acute pulmonary embolism in children.


Corresponding author

Correspondence to: Dr H. S. Hancock, MD, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, 13123 East 16th Avenue, Box 158, Aurora, CO 80045, United States of America. Tel: +1 720 777 6918; Fax: +1 720 777 7258; E-mail:


Hide All
1. Raffini, L, Huang, YS, Witmer, C, Feudtner, C. Dramatic increase in venous thromboembolism in children's hospitals in the United States from 2001 to 2007. Pediatrics 2009; 124: 10011008.
2. Biss, TT, Brandao, LR, Kahr, WH, Chan, AK, Williams, S. Clinical features and outcome of pulmonary embolism in children. Br J Haematol 2008; 142: 808818.
3. Hsiao, SH, Yang, SH, Wang, WC, Lee, CY, Lin, SK, Liu, CP. Usefulness of regional myocardial performance index to diagnose pulmonary embolism in patients with echocardiographic signs of pulmonary hypertension. Am J Cardiol 2006; 98: 16521655.
4. Hsiao, SH, Lee, CY, Chang, SM, Yang, SH, Lin, SK, Huang, WC. Pulmonary embolism and right heart function: insights from myocardial Doppler tissue imaging. J Am Soc Echocardiogr 2006; 19: 822828.
5. Rydman, R, Larsen, F, Caidahl, K, Alam, M. Right ventricular function in patients with pulmonary embolism: early and late findings using Doppler tissue imaging. J Am Soc Echocardiogr 2010; 23: 531537.
6. Kasper, W, Konstantinides, S, Geibel, A, Tiede, N, Krause, T, Just, H. Prognostic significance of right ventricular afterload stress detected by echocardiography in patients with clinically suspected pulmonary embolism. Heart 1997; 77: 346349.
7. Kline, JA, Steuerwald, MT, Marchick, MR, Hernandez-Nino, J, Rose, GA. Prospective evaluation of right ventricular function and functional status 6 months after acute submassive pulmonary embolism: frequency of persistent or subsequent elevation in estimated pulmonary artery pressure. Chest 2009; 136: 12021210.
8. Konstantinides, S. Pulmonary embolism: impact of right ventricular dysfunction. Curr Opin Cardiol 2005; 20: 496501.
9. Monagle, P, Chan, A, Massicotte, P, Chalmers, E, Michelson, AD. Antithrombotic therapy in children: the 7th ACCP Conference on Antithrombotic and Thrombolytic Therapy, Chest, 2004; 126: 645S–687S.
10. Monagle, P, Chalmers, E, Chan, A, et al. Antithrombotic therapy in neonates and children: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008; 133: 887S968S.
11. Calhoon, MJ, Ross, CN, Pounder, E, Cassidy, D, Manco-Johnson, MJ, Goldenberg, NA. High prevalence of thrombophilic traits in children with family history of thromboembolism. J Pediatr 2010; 157: 485489.
12. Goldenberg, NA, Durham, JD, Knapp-Clevenger, R, Manco-Johnson, MJ. A thrombolytic regimen for high-risk deep venous thrombosis may substantially reduce the risk of postthrombotic syndrome in children. Blood 2007; 110: 4553.
13. Goldenberg, NA, Branchford, B, Wang, M, Ray, C Jr, Durham, JD, Manco-Johnson, MJ. Percutaneous mechanical andpharmacomechanical thrombolysis for occlusive deep vein thrombosis of the proximal limb in adolescent subjects: findings from an institution-based prospective inception cohort study of pediatric venous thromboembolism. J Vasc Interv Radiol 2011; 22: 121132.
14. Miyakis, S, Lockshin, MD, Atsumi, T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006; 4: 295306.
15. Rajpurkar, M, Warrier, I, Chitlur, M, et al. Pulmonary embolism-experience at a single children's hospital. Thromb Res 2007; 119: 699703.
16. Pengo, V, Lensing, AW, Prins, MH, et al. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med 2004; 350: 22572264.
17. Piazza, G, Goldhaber, SZ. Chronic thromboembolic pulmonary hypertension. N Engl J Med 2011; 364: 351360.
18. Poli, D, Grifoni, E, Antonucci, E, et al. Incidence of recurrent venous thromboembolism and of chronic thromboembolic pulmonary hypertension in patients after a first episode of pulmonary embolism. J Thromb Thrombolysis 2010; 30: 294299.
19. Geibel, A, Zehender, M, Kasper, W, Olschewski, M, Klima, C, Konstantinides, SV. Prognostic value of the ECG on admission in patients with acute major pulmonary embolism. Eur Respir J 2005; 25: 843848.
20. Goldhaber, SZ, Visani, L, De Rosa, M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet 1999; 353: 13861389.
21. Kucher, N, Walpoth, N, Wustmann, K, Noveanu, M, Gertsch, M. QR in V1 – an ECG sign associated with right ventricular strain and adverse clinical outcome in pulmonary embolism. Eur Heart J 2003; 24: 11131119.
22. Kosuge, M, Kimura, K, Ishikawa, T, et al. Prognostic significance of inverted T waves in patients with acute pulmonary embolism. Circ J 2006; 70: 750755.
23. Vanni, S, Polidori, G, Vergara, R, et al. Prognostic value of ECG among patients with acute pulmonary embolism and normal blood pressure. Am J Med 2009; 122: 257264.


Cardiac findings and long-term thromboembolic outcomes following pulmonary embolism in children: a combined retrospective-prospective inception cohort study

  • Hayley S. Hancock (a1), Michael Wang (a2) (a3), Katja M. Gist (a4), Elizabeth Gibson (a2) (a3), Shelley D. Miyamoto (a4), Peter M. Mourani (a5), Marilyn J. Manco-Johnson (a2) (a3) and Neil A. Goldenberg (a2) (a3) (a6) (a7)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed