Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-jxh9h Total loading time: 0.323 Render date: 2021-04-19T01:13:07.132Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Thromboprophylaxis strategies for children with single-ventricle circulations (superior or total cavo-pulmonary connections) after stent implantation

Published online by Cambridge University Press:  18 June 2019

Yinn K. Ooi
Affiliation:
Division of Cardiology, Children’s Healthcare of Atlanta, Atlanta, GA, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
R. Allen Ligon
Affiliation:
Division of Cardiology, Children’s Healthcare of Atlanta, Atlanta, GA, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
Michael Kelleman
Affiliation:
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
Robert N. Vincent
Affiliation:
Division of Cardiology, Children’s Healthcare of Atlanta, Atlanta, GA, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
Holly D. Bauser-Heaton
Affiliation:
Division of Cardiology, Children’s Healthcare of Atlanta, Atlanta, GA, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
Dennis W. Kim
Affiliation:
Division of Cardiology, Children’s Healthcare of Atlanta, Atlanta, GA, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
Christopher J. Petit
Affiliation:
Division of Cardiology, Children’s Healthcare of Atlanta, Atlanta, GA, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
Corresponding
E-mail address:

Abstract

Objective:

To define optimal thromboprophylaxis strategy after stent implantation in superior or total cavopulmonary connections.

Background:

Stent thrombosis is a rare complication of intravascular stenting, with a perceived higher risk in single-ventricle patients.

Methods:

All patients who underwent stent implantation within superior or total cavopulmonary connections (caval vein, innominate vein, Fontan, or branch pulmonary arteries) were included. Cohort was divided into aspirin therapy alone versus advanced anticoagulation, including warfarin, enoxaparin, heparin, or clopidogrel. Primary endpoint was in-stent or downstream thrombus, and secondary endpoints included bleeding complications.

Results:

A total of 58 patients with single-ventricle circulation underwent 72 stent implantations. Of them 14 stents (19%) were implanted post-superior cavopulmonary connection and 58 (81%) post-total cavopulmonary connection. Indications for stenting included vessel/conduit stenosis (67%), external compression (18%), and thrombotic occlusion (15%). Advanced anticoagulation was prescribed for 32 (44%) patients and aspirin for 40 (56%) patients. Median follow up was 1.1 (25th–75th percentile, 0.5–2.6) years. Echocardiograms were available in 71 patients (99%), and advanced imaging in 44 patients (61%). Thrombosis was present in two patients on advanced anticoagulation (6.3%) and none noted in patients on aspirin (p = 0.187). Both patients with in-stent thrombus underwent initial stenting due to occlusive left pulmonary artery thrombus acutely post-superior cavopulmonary connection. There were seven (22%) significant bleeding complications for advanced anticoagulation and none for aspirin (p < 0.001).

Conclusions:

Antithrombotic strategy does not appear to affect rates of in-stent thrombus in single-ventricle circulations. Aspirin alone may be sufficient for most patients undergoing stent implantation, while pre-existing thrombus may warrant advanced anticoagulation.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Dasi, LP, Krishnankuttyrema, R, Kitajima, HD, et al. Fontan hemodynamics: importance of pulmonary artery diameter. J Thorac Cardiovasc Surg 2009; 137: 560564.CrossRefGoogle ScholarPubMed
Fontan, F, Kirklin, JW, Fernandez, G, et al. Outcome after a “perfect” Fontan operation. Circulation 1990; 81: 15201536.CrossRefGoogle ScholarPubMed
Khairy, P, Fernandes, SM, Mayer, JE Jr., et al. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 2008; 117: 8592.CrossRefGoogle ScholarPubMed
Monagle, P, Cochrane, A, Roberts, R, et al. A multicenter, randomized trial comparing heparin/warfarin and acetylsalicylic acid as primary thromboprophylaxis for 2 years after the Fontan procedure in children. J Am Coll Cardiol 2011; 58: 645651.CrossRefGoogle ScholarPubMed
Rosenthal, DN, Friedman, AH, Kleinman, CS, Kopf, GS, Rosenfeld, LE, Hellenbrand, WE. Thromboembolic complications after Fontan operations. Circulation 1995; 92: II287II293.CrossRefGoogle ScholarPubMed
Bhole, V, Wright, JG, De Giovanni, JV, et al. Transcatheter interventions in the early postoperative period after the Fontan procedure. Catheter Cardiovasc Interv 2011; 77: 9298.CrossRefGoogle ScholarPubMed
Mets, JM, Bergersen, L, Mayer, JE Jr., Marshall, AC, McElhinney, DB. Outcomes of stent implantation for obstruction of intracardiac lateral tunnel Fontan pathways. Circ Cardiovasc Interv 2013; 6: 92100.CrossRefGoogle ScholarPubMed
Noonan, P, Kudumula, V, Anderson, B, et al. Stenting of the left pulmonary artery after palliation of hypoplastic left heart syndrome. Catheter Cardiovasc Interv 2016; 88: 225232.CrossRefGoogle ScholarPubMed
Sreeram, N, Emmel, M, Bennink, G. Stent therapy for acute and chronic obstructions in extracardiac Fontan conduits. Cardiol Young 2013; 23: 766768.CrossRefGoogle ScholarPubMed
Tanase, D, Ewert, P, Eicken, A. Plastic bronchitis: symptomatic improvement after pulmonary arterial stenting in four patients with Fontan circulation. Cardiol Young 2015; 25: 151153.CrossRefGoogle ScholarPubMed
Tang, E, McElhinney, DB, Restrepo, M, Valente, AM, Yoganathan, AP. Haemodynamic impact of stent implantation for lateral tunnel Fontan stenosis: a patient-specific computational assessment. Cardiol Young 2016; 26: 116126.CrossRefGoogle ScholarPubMed
Udink Ten Cate, FE, Trieschmann, U, Germund, I, et al. Stenting the Fontan pathway in paediatric patients with obstructed extracardiac conduits. Heart 2017; 103: 11111116.CrossRefGoogle ScholarPubMed
Alsaied, T, Alsidawi, S, Allen, CC, Faircloth, J, Palumbo, JS, Veldtman, GR. Strategies for thromboprophylaxis in Fontan circulation: a meta-analysis. Heart 2015; 101: 17311737.Google ScholarPubMed
Iyengar, AJ, Winlaw, DS, Galati, JC, et al. No difference between aspirin and warfarin after extracardiac Fontan in a propensity score analysis of 475 patients. Eur J Cardiothorac Surg 2016; 50: 980987.CrossRefGoogle Scholar
Marrone, C, Galasso, G, Piccolo, R, et al. Antiplatelet versus anticoagulation therapy after extracardiac conduit Fontan: a systematic review and meta-analysis. Pediatr Cardiol 2011; 32: 3239.CrossRefGoogle ScholarPubMed
Potter, BJ, Leong-Sit, P, Fernandes, SM, et al. Effect of aspirin and warfarin therapy on thromboembolic events in patients with univentricular hearts and Fontan palliation. Int J Cardiol 2013; 168: 39403943.CrossRefGoogle ScholarPubMed
Faircloth, JM, Miner, KM, Alsaied, T, et al. Time in therapeutic range as a marker for thrombotic and bleeding outcomes in Fontan patients. J Thromb Thrombolysis 2017; 44: 3847.CrossRefGoogle ScholarPubMed
McCrindle, BW, Manlhiot, C, Cochrane, A, et al. Factors associated with thrombotic complications after the Fontan procedure: a secondary analysis of a multicenter, randomized trial of primary thromboprophylaxis for 2 years after the Fontan procedure. J Am Coll Cardiol 2013; 61: 346353.CrossRefGoogle ScholarPubMed
Hirono, K, Ibuki, K, Tomita, H. Percutaneous catheter aspiration thrombectomy for the occluded stents of pulmonary artery in children with single ventricle physiology after Fontan surgery. Catheter Cardiovasc Interv 2014; 84: 11531156.CrossRefGoogle ScholarPubMed
Schilling, C, Dalziel, K, Iyengar, AJ, d’Udekem, Y. The cost differential between warfarin versus aspirin treatment after a Fontan procedure. Heart Lung Circ 2017.CrossRefGoogle ScholarPubMed
Vlachojannis, GJ, Smits, PC, Hofma, SH, et al. Biodegradable polymer biolimus-eluting stents versus durable polymer everolimus-eluting stents in patients with coronary artery disease: final 5-year report from the COMPARE II trial (Abluminal biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent). JACC Cardiovasc Interv 2017; 10: 12151221.CrossRefGoogle Scholar
Wiebe, J, Hoppmann, P, Colleran, R, et al. Long-term clinical outcomes of patients treated with everolimus-eluting bioresorbable stents in routine practice: 2-year results of the ISAR-ABSORB registry. JACC Cardiovasc Interv 2017; 10: 12221229.CrossRefGoogle ScholarPubMed
Hanson, SR, Sakariassen, KS. Blood flow and antithrombotic drug effects. Am Heart J 1998; 135: S132S145.Google ScholarPubMed
Sakariassen, KS, Hanson, SR, Cadroy, Y. Methods and models to evaluate shear-dependent and surface reactivity-dependent antithrombotic efficacy. Thromb Res 2001; 104: 149174.CrossRefGoogle ScholarPubMed
Spivack, A, Troutman, D, Dougherty, M, Calligaro, K. Changing strategies to treat venous thrombotic occlusions of the upper and lower extremities secondary to compressive phenomena. Vasc Endovascular Surg 2013; 47: 274277.CrossRefGoogle ScholarPubMed
Lin, PH, Zhou, W, Dardik, A, et al. Catheter-direct thrombolysis versus pharmacomechanical thrombectomy for treatment of symptomatic lower extremity deep venous thrombosis. Am J Surg 2006; 192: 782788.CrossRefGoogle ScholarPubMed
Goldenberg, NA, Branchford, B, Wang, M, Ray, C Jr., Durham, JD, Manco-Johnson, MJ. Percutaneous mechanical and pharmacomechanical thrombolysis for occlusive deep vein thrombosis of the proximal limb in adolescent subjects: findings from an institution-based prospective inception cohort study of pediatric venous thromboembolism. J Vasc Interv Radiol 2011; 22: 121132.CrossRefGoogle ScholarPubMed

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 25
Total number of PDF views: 178 *
View data table for this chart

* Views captured on Cambridge Core between 18th June 2019 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Thromboprophylaxis strategies for children with single-ventricle circulations (superior or total cavo-pulmonary connections) after stent implantation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Thromboprophylaxis strategies for children with single-ventricle circulations (superior or total cavo-pulmonary connections) after stent implantation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Thromboprophylaxis strategies for children with single-ventricle circulations (superior or total cavo-pulmonary connections) after stent implantation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *