Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-18T14:05:52.207Z Has data issue: false hasContentIssue false

Aortic dilation in adults with repaired tetralogy of Fallot: a single-centre study

Published online by Cambridge University Press:  27 February 2024

Tahereh Saedi
Affiliation:
Iran University of Medical Sciences, Tehran, Iran
Rashide Siami
Affiliation:
Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
Amir J. Ghaffari
Affiliation:
Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
Danial Farmani
Affiliation:
Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
Sedigheh Saedi*
Affiliation:
Congenital Heart Disease Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
*
Corresponding author: S. Saedi; Email: sedsaedi@gmail.com

Abstract

Background:

Tetralogy of Fallot is the most prevalent cyanotic CHD. With the advent of advanced surgical methods, the majority of tetralogy of Fallot patients reach adulthood. However, many need re-intervention for the residual anomalies including residual right ventricular outflow obstruction, pulmonary regurgitation, residual ventricular septal defects, and progressive aortic dilatation. Aortic dilation could lead to aortic regurgitation or dissection requiring surgical correction. In the current study, we aimed to determine the prevalence and outcomes of aortic root dilatation in adults with repaired tetralogy of Fallot in our tertiary care centre.

Methods:

In this retrospective study, 730 consecutive patients with history of repaired tetralogy of Fallot were included. Aortic diameter at the level of annulus, the sinus of Valsalva, sinotubular junction, and the ascending aorta as measured by echocardiography were evaluated. Prevalence of outcomes necessitating re-intervention including aortic regurgitation and dissection were recorded.

Results:

The mean size of annulus, sinus of Valsalva, sinotubular-junction, and ascending aorta in the latest available echocardiography of patients were 2.4+/-0.4 cm, 3.3+/-0.5 cm, 2.9+/-0.5cm, and 3.2+/-0.5cm, respectively. Prevalence of dilatation of sinus of Valsalva, dilation of Ascending aorta, sinotubular-junction, and aortic annulus was 28.7%, 21%, 8.3%, and 1 %, respectively. Five patients had severe aortic regurgitation (0.6%) and underwent surgical repair. One of these patients presented with acute aortic dissection.

Conclusion:

Aortic dilation is common in tetralogy of Fallot but prevalence of redo surgery for aortic dilation, regurgitation, and adverse events including acute dissection is low.

Type
Brief Report
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moons, P, Sluysmans, T, De Wolf, D, et al. Congenital heart disease in 111 225 births in Belgium: birth prevalence, treatment and survival in the 21st century. Acta Paediatr 2009; 98: 472477.CrossRefGoogle Scholar
Therrien, J, Webb, G. Clinical update on adults with congenital heart disease. Lancet 2003; 362: 13051313.CrossRefGoogle ScholarPubMed
Baumgartner, H. The task force on the management of grown-up congenital heart disease of the European society of cardiology (ESC): ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J 2010; 31: 29152957.Google Scholar
Lui, GK, Saidi, A, Bhatt, AB, et al. Diagnosis and management of noncardiac complications in adults with congenital heart disease: a scientific statement from the American heart association. Circulation 2017; 136: e348e392.CrossRefGoogle ScholarPubMed
Mueller, AS, McDonald, DM, Singh, HS, Ginns, JN. Heart failure in adult congenital heart disease: tetralogy of Fallot. Heart Fail Rev 2020; 25: 583598.CrossRefGoogle ScholarPubMed
van der Ven, JPG, van den Bosch, E, Bogers, AJCC, Helbing, WA. Current outcomes and treatment of tetralogy of Fallot. F1000 Research 2019; 8: F1000 Faculty Rev-1530. doi: 10.12688/f1000research.17174.1.CrossRefGoogle ScholarPubMed
Cruz, C, Pinho, T, Madureira, AJ, et al. Is it important to assess the ascending aorta after tetralogy of Fallot repair? Rev Port Cardiol 2018; 37: 773779.CrossRefGoogle ScholarPubMed
Niwa, K, Siu, SC, Webb, GD, Gatzoulis, MA. Progressive aortic root dilatation in adults late after repair of tetralogy of Fallot. Circulation 2002; 106: 13741378.CrossRefGoogle ScholarPubMed
Cruz, C, Pinho, T, Ribeiro, V, Dias, CC, Cardoso, JS, Maciel, MJ. Aortic dilatation after tetralogy of Fallot repair: a ghost from the past or a problem in the future? Rev Port Cardiol 2018; 37: 549557.CrossRefGoogle ScholarPubMed
Dodds, III GA, Warnes, CA, Danielson, GK. Aortic valve replacement after repair of pulmonary atresia and ventricular septal defect or tetralogy of fallot. J Thorac Cardiovasc Surg 1997; 113: 736741.CrossRefGoogle ScholarPubMed
Lang, RM, Badano, LP, Mor-Avi, V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr 2015; 28: 139.e14.CrossRefGoogle ScholarPubMed
Mongeon, FP, Gurvitz, MZ, Broberg, CS, et al. Aortic root dilatation in adults with surgically repaired tetralogy of fallot: a multicenter cross-sectional study. Circulation 2013; 127: 172179.CrossRefGoogle ScholarPubMed
Abd El Meguid, KR, Mahmoud, HB, Mohammad, MM. Predictors for dilated aorta in repaired and unrepaired tetralogy of Fallot. World J Cardiovasc Dis 2015; 5: 233253.CrossRefGoogle Scholar
Senzaki, H, Iwamoto, Y, Ishido, H, et al. Arterial haemodynamics in patients after repair of tetralogy of Fallot: influence on left ventricular after load and aortic dilatation. Heart 2008; 94: 7074.CrossRefGoogle ScholarPubMed
Chong, WY, Wong, WH, Chiu, CS, Cheung, YF. Aortic root dilation and aortic elastic properties in children after repair of tetralogy of Fallot. Am J Cardiol 2006; 97: 905909.CrossRefGoogle ScholarPubMed
Schäfer, M, Barker, AJ, Jaggers, J, et al. Abnormal aortic flow conduction is associated with increased viscous energy loss in patients with repaired tetralogy of Fallot. Eur J Cardio Thorac 2020; 57: 588595.CrossRefGoogle ScholarPubMed
Tan, JL, Davlouros, PA, McCarthy, KP, Gatzoulis, MA, Ho, SY. Intrinsic histological abnormalities of aortic root and ascending aorta in tetralogy of Fallot: evidence of causative mechanism for aortic dilatation and aortopathy. Circulation 2005; 112: 961968.CrossRefGoogle ScholarPubMed
Chowdhury, UK, Mishra, AK, Ray, R, Kalaivani, M, Reddy, SM, Venugopal, P. Histopathologic changes in ascending aorta and risk factors related to histopathologic conditions and aortic dilatation in patients with tetralogy of Fallot. J Thorac Cardiovasc Surg 2008; 135: 6977.CrossRefGoogle ScholarPubMed
Bhat, AH, Smith, CJ, Hawker, RE. Late aortic root dilatation in tetralogy of Fallot may be prevented by early repair in infancy. Pediatr Cardiol 2004; 25: 654659.CrossRefGoogle ScholarPubMed
François, K, Zaqout, M, Bové, T, et al. The fate of the aortic root after early repair of tetralogy of Fallot. Eur J Cardio Thorac 2010; 37: 12541258.CrossRefGoogle ScholarPubMed
Warnes, CA, Child, JS. Aortic root dilatation after repair of tetralogy of Fallot: pathology from the past? Circulation 2002; 106: 13101311.CrossRefGoogle ScholarPubMed