We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send this article to your account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we discuss the properties of the embedding operator $i_{\unicode[STIX]{x1D707}}^{\unicode[STIX]{x1D6EC}}:M_{\unicode[STIX]{x1D6EC}}^{\infty }{\hookrightarrow}L^{\infty }(\unicode[STIX]{x1D707})$, where $\unicode[STIX]{x1D707}$ is a positive Borel measure on $[0,1]$ and $M_{\unicode[STIX]{x1D6EC}}^{\infty }$ is a Müntz space. In particular, we compute the essential norm of this embedding. As a consequence, we recover some results of the first author. We also study the compactness (resp. weak compactness) and compute the essential norm (resp. generalized essential norm) of the embedding $i_{\unicode[STIX]{x1D707}_{1},\unicode[STIX]{x1D707}_{2}}:L^{\infty }(\unicode[STIX]{x1D707}_{1}){\hookrightarrow}L^{\infty }(\unicode[STIX]{x1D707}_{2})$, where $\unicode[STIX]{x1D707}_{1}$, $\unicode[STIX]{x1D707}_{2}$ are two positive Borel measures on [0, 1] with $\unicode[STIX]{x1D707}_{2}$ absolutely continuous with respect to $\unicode[STIX]{x1D707}_{1}$.
An open question akin to the slice-ribbon conjecture asks whether every ribbon knot can be represented as a symmetric union. Next to this basic existence question sits the question of uniqueness of such representations. Eisermann and Lamm investigated the latter question by introducing a notion of symmetric equivalence among symmetric union diagrams and showing that non-equivalent diagrams can be detected using a refined version of the Jones polynomial. We prove that every topological spin model gives rise to many effective invariants of symmetric equivalence, which can be used to distinguish infinitely many Reidemeister equivalent but symmetrically non-equivalent symmetric union diagrams. We also show that such invariants are not equivalent to the refined Jones polynomial and we use them to provide a partial answer to a question left open by Eisermann and Lamm.
Let ${\mathcal{R}}$ be a small preadditive category, viewed as a “ring with several objects.” A right${\mathcal{R}}$-module is an additive functor from ${\mathcal{R}}^{\text{op}}$ to the category $Ab$ of abelian groups. We show that every hereditary torsion theory on the category $({\mathcal{R}}^{\text{op}},Ab)$ of right ${\mathcal{R}}$-modules must be differential.
We prove that if $C$ is a reflexive smooth plane curve of degree $d$ defined over a finite field $\mathbb{F}_{q}$ with $d\leqslant q+1$, then there is an $\mathbb{F}_{q}$-line $L$ that intersects $C$ transversely. We also prove the same result for non-reflexive curves of degree $p+1$ and $2p+1$ when $q=p^{r}$.
A square-free monomial ideal $I$ of $k[x_{1},\ldots ,x_{n}]$ is said to be an $f$-ideal if the facet complex and non-face complex associated with $I$ have the same $f$-vector. We show that $I$ is an $f$-ideal if and only if its Newton complementary dual $\widehat{I}$ is also an $f$-ideal. Because of this duality, previous results about some classes of $f$-ideals can be extended to a much larger class of $f$-ideals. An interesting by-product of our work is an alternative formulation of the Kruskal–Katona theorem for $f$-vectors of simplicial complexes.
In this paper, by using operator-valued ${\dot{C}}^{\unicode[STIX]{x1D6FC}}$-Fourier multiplier results on vector-valued Hölder continuous function spaces, we give a characterization of the $C^{\unicode[STIX]{x1D6FC}}$-well-posedness for the third order differential equations $au^{\prime \prime \prime }(t)+u^{\prime \prime }(t)=Au(t)+Bu^{\prime }(t)+f(t)$, ($t\in \mathbb{R}$), where $A,B$ are closed linear operators on a Banach space $X$ such that $D(A)\subset D(B)$, $a\in \mathbb{C}$ and $0<\unicode[STIX]{x1D6FC}<1$.
Let $k$ be an arbitrary positive integer and let $\unicode[STIX]{x1D6FE}(n)$ stand for the product of the distinct prime factors of $n$. For each integer $n\geqslant 2$, let $a_{n}$ and $b_{n}$ stand respectively for the maximum and the minimum of the $k$ integers $\unicode[STIX]{x1D6FE}(n+1),\unicode[STIX]{x1D6FE}(n+2),\ldots ,\unicode[STIX]{x1D6FE}(n+k)$. We show that $\liminf _{n\rightarrow \infty }a_{n}/b_{n}=1$. We also prove that the same result holds in the case of the Euler function and the sum of the divisors function, as well as the functions $\unicode[STIX]{x1D714}(n)$ and $\unicode[STIX]{x1D6FA}(n)$, which stand respectively for the number of distinct prime factors of $n$ and the total number of prime factors of $n$ counting their multiplicity.
According to a well-known theorem of Serre and Tate, the infinitesimal deformation theory of an abelian variety in positive characteristic is equivalent to the infinitesimal deformation theory of its Barsotti–Tate group. We extend this result to 1-motives.
In this note we give a characterization of $\ell ^{p}\times \cdots \times \ell ^{p}\rightarrow \ell ^{q}$ boundedness of maximal operators associated with multilinear convolution averages over spheres in $\mathbb{Z}^{n}$.
We construct a family of self-affine tiles in $\mathbb{R}^{d}$ ($d\geqslant 2$) with noncollinear digit sets, which naturally generalizes a class studied originally by Q.-R. Deng and K.-S. Lau in $\mathbb{R}^{2}$, and its extension to $\mathbb{R}^{3}$ by the authors. We obtain necessary and sufficient conditions for the tiles to be connected and for their interiors to be contractible.
Let $G$ be a claw-free graph on $n$ vertices with clique number $\unicode[STIX]{x1D714}$, and consider the chromatic number $\unicode[STIX]{x1D712}(G^{2})$ of the square $G^{2}$ of $G$. Writing $\unicode[STIX]{x1D712}_{s}^{\prime }(d)$ for the supremum of $\unicode[STIX]{x1D712}(L^{2})$ over the line graphs $L$ of simple graphs of maximum degree at most $d$, we prove that $\unicode[STIX]{x1D712}(G^{2})\leqslant \unicode[STIX]{x1D712}_{s}^{\prime }(\unicode[STIX]{x1D714})$ for $\unicode[STIX]{x1D714}\in \{3,4\}$. For $\unicode[STIX]{x1D714}=3$, this implies the sharp bound $\unicode[STIX]{x1D712}(G^{2})\leqslant 10$. For $\unicode[STIX]{x1D714}=4$, this implies $\unicode[STIX]{x1D712}(G^{2})\leqslant 22$, which is within 2 of the conjectured best bound. This work is motivated by a strengthened form of a conjecture of Erdős and Nešetřil.
We investigate how the Minkowski sum of two polytopes affects their graph and, in particular, their diameter. We show that the diameter of the Minkowski sum is bounded below by the diameter of each summand and above by, roughly, the product between the diameter of one summand and the number of vertices of the other. We also prove that both bounds are sharp. In addition, we obtain a result on polytope decomposability. More precisely, given two polytopes $P$ and $Q$, we show that $P$ can be written as a Minkowski sum with a summand homothetic to $Q$ if and only if $P$ has the same number of vertices as its Minkowski sum with $Q$.
Let $\unicode[STIX]{x1D707}$ be a positive finite Borel measure on the unit circle and ${\mathcal{D}}(\unicode[STIX]{x1D707})$ the associated harmonically weighted Dirichlet space. In this paper we show that for each closed subset $E$ of the unit circle with zero $c_{\unicode[STIX]{x1D707}}$-capacity, there exists a function $f\in {\mathcal{D}}(\unicode[STIX]{x1D707})$ such that $f$ is cyclic (i.e., $\{pf:p\text{ is a polynomial}\}$ is dense in ${\mathcal{D}}(\unicode[STIX]{x1D707})$), $f$ vanishes on $E$, and $f$ is uniformly continuous. Next, we provide a sufficient condition for a continuous function on the closed unit disk to be cyclic in ${\mathcal{D}}(\unicode[STIX]{x1D707})$.
We explicitly describe the isomorphism between two combinatorial realizations of Kashiwara’s infinity crystal in types B and C. The first realization is in terms of marginally large tableaux and the other is in terms of Kostant partitions coming from PBW bases. We also discuss a stack notation for Kostant partitions which simplifies that realization.
Let $\{\mathbf{F}(n)\}_{n\in \mathbb{N}}$ and $\{\mathbf{G}(n)\}_{n\in \mathbb{N}}$ be linear recurrence sequences. It is a well-known Diophantine problem to determine the finiteness of the set ${\mathcal{N}}$ of natural numbers such that their ratio $\mathbf{F}(n)/\mathbf{G}(n)$ is an integer. In this paper we study an analogue of such a divisibility problem in the complex situation. Namely, we are concerned with the divisibility problem (in the sense of complex entire functions) for two sequences $F(n)=a_{0}+a_{1}f_{1}^{n}+\cdots +a_{l}f_{l}^{n}$ and $G(n)=b_{0}+b_{1}g_{1}^{n}+\cdots +b_{m}g_{m}^{n}$, where the $f_{i}$ and $g_{j}$ are nonconstant entire functions and the $a_{i}$ and $b_{j}$ are non-zero constants except that $a_{0}$ can be zero. We will show that the set ${\mathcal{N}}$ of natural numbers such that $F(n)/G(n)$ is an entire function is finite under the assumption that $f_{1}^{i_{1}}\cdots f_{l}^{i_{l}}g_{1}^{j_{1}}\cdots g_{m}^{j_{m}}$ is not constant for any non-trivial index set $(i_{1},\ldots ,i_{l},j_{1},\ldots ,j_{m})\in \mathbb{Z}^{l+m}$.
We consider three special and significant cases of the following problem. Let $D\subset \mathbb{R}^{d}$ be a (possibly unbounded) set of finite Lebesgue measure. Let $E(\mathbb{Z}^{d})=\{e^{2\unicode[STIX]{x1D70B}ix\cdot n}\}\text{}_{n\in \mathbb{Z}^{d}}$ be the standard exponential basis on the unit cube of $\mathbb{R}^{d}$. Find conditions on $D$ for which $E(\mathbb{Z}^{d})$ is a frame, a Riesz sequence, or a Riesz basis for $L^{2}(D)$.
The notion of metric compactification was introduced by Gromov and later rediscovered by Rieffel. It has been mainly studied on proper geodesic metric spaces. We present here a generalization of the metric compactification that can be applied to infinite-dimensional Banach spaces. Thereafter we give a complete description of the metric compactification of infinite-dimensional $\ell _{p}$ spaces for all $1\leqslant p<\infty$. We also give a full characterization of the metric compactification of infinite-dimensional Hilbert spaces.
We consider the unital Banach algebra $\ell ^{1}(\mathbb{Z}_{+})$ and prove directly, without using cyclic cohomology, that the simplicial cohomology groups ${\mathcal{H}}^{n}(\ell ^{1}(\mathbb{Z}_{+}),\ell ^{1}(\mathbb{Z}_{+})^{\ast })$ vanish for all $n\geqslant 2$. This proceeds via the introduction of an explicit bounded linear operator which produces a contracting homotopy for $n\geqslant 2$. This construction is generalised to unital Banach algebras $\ell ^{1}({\mathcal{S}})$, where ${\mathcal{S}}={\mathcal{G}}\cap \mathbb{R}_{+}$ and ${\mathcal{G}}$ is a subgroup of $\mathbb{R}_{+}$.