Skip to main content Accessibility help
×
Home

Some Remarks on Ramsay's Theorem

  • P. Erdös (a1)

Extract

A special case of a well known theorem of Ramsay [3] states that an infinite graph either contains an infinite complete subgraph or it contains an infinite independent set; in other words there exists an infinite subset of its vertices so that either every two of them are joined by an edge or no two of them are joined by an edge. Thus if we have a graph whose vertices are the integers, and which has no infinite complete sub-graph, it certainly has an infinite independent set. The question can now be asked if there exists an independent set whose vertices n1 < n2 < … do not tend to infinity too fast.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Some Remarks on Ramsay's Theorem
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Some Remarks on Ramsay's Theorem
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Some Remarks on Ramsay's Theorem
      Available formats
      ×

Copyright

References

Hide All
1. Erdös, P. and Szekeres., G., A combinatorial problem in geometry, Compositio Math. 2(1935), 463470.
2. Erdős, P., Graph theory and probability II, Can. J. Math. 13 (1961), 346352.
3. Ramsay, F. P., On a problem of formal logic, Proc. London Math. Soc., 30(1929), 264286.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Some Remarks on Ramsay's Theorem

  • P. Erdös (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed