Skip to main content Accessibility help
×
Home

The Saddle-Point Method and the Li Coefficients

  • Kamel Mazhouda (a1)

Abstract

In this paper, we apply the saddle-point method in conjunction with the theory of the Nörlund–Rice integrals to derive precise asymptotic formula for the generalized Li coefficients established by Omar and Mazhouda. Actually, for any function $F$ in the Selberg class $\mathcal{S}$ and under the Generalized Riemann Hypothesis, we have

$${{\lambda }_{F}}(n)\,=\,\frac{{{d}_{F}}}{2}n\,\log \,n\,+\,{{c}_{F}}n\,+\,O(\sqrt{n}\,\log \,n),$$

with

$${{c}_{F}}\,=\,\frac{{{d}_{F}}}{2}(\gamma \,-\,1)\,+\,\frac{1}{2}\log (\lambda \text{Q}_{F}^{2}),\,\,\lambda \,=\,\prod\limits_{j=1}^{r}{\lambda _{j}^{2{{\lambda }_{j}}}},$$

where $\gamma $ is the Euler's constant and the notation is as below.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Saddle-Point Method and the Li Coefficients
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Saddle-Point Method and the Li Coefficients
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Saddle-Point Method and the Li Coefficients
      Available formats
      ×

Copyright

References

Hide All
[1] Bombieri, E. and Hejhal, D. A., On the distribution of zeros of linear combinations of Euler products. Duke. Math. J. 80(1995), no. 3, 821862. doi:10.1215/S0012-7094-95-08028-4
[2] Bombieri, E. and Lagarias, J. C., Complements to Li's criterion for the Riemann hypothesis. J. Number Theory 77(1999), no. 2, 274287. doi:10.1006/jnth.1999.2392
[3] Coffey, M. W., Relations and positivity results for the derivatives of the Riemann ξ function. J. Comput. Appl. Math. 166(2004), no. 2, 525534. doi:10.1016/j.cam.2003.09.003
[4] Coffey, M. W., Toward verification of the Riemann hypothesis. Math. Phys. Anal. Geom. 8(2005), no. 3, 211255. doi:10.1007/s11040-005-7584-9
[5] Flajolet, P. and Vepstas, L., On differences of zeta values. J. Comput. Appl. Math. 220(2008), no. 1–2, 5873. doi:10.1016/j.cam.2007.07.040
[6] Kaczorowski, J. and Perelli, A., The Selberg class: a survey. In: Number theory in progress, 2, de Gruyter, Berlin, 1999, pp. 953992.
[7] Lagarias, J. C., Li coefficients for automorphic L-functions. Ann. Inst. Fourier 57(2007), no. 5, 16891740.
[8] Li, X.-J., The positivity of a sequence of number and the Riemann hypothesis. J. Number Theory 65(1997), no. 2, 325333. doi:10.1006/jnth.1997.2137
[9] Li, X.-J., Explicit formulas for Dirichlet and Hecke L-functions. Illinois J. Math. 48(2004), no. 2, 491503.
[10] Maslanka, K., Effective method of computing Li's coefficients and their properties. Experimental Math., to appear.
[11] Omar, S. and Mazhouda, K., Le critère de Li et l’hypothèse de Riemann pour la classe de Selberg. J. Number Theory 125(2007), no. 1, 5058. doi:10.1016/j.jnt.2006.09.013
[12] Omar, S. and Mazhouda, K., Le critère de positivité de Li pour la classe de Selberg. C. R. Acad. Sci. Paris 345(2007), no. 5, 245248.
[13] Omar, S. and Mazhouda, K., Corrigendum et addendum à Le critère de Li et l’hypothèse de Riemann pour la classe de Selberg [J. Number Theory 125(2007), no. 1, 50–58]. J. Number Theory 130(2010), no. 4, 11091114. doi:10.1016/j.jnt.2009.10.010
[14] Rudnick, Z. and Sarnak, P., Zeros of principal L-functions and radom matrix theory. Duke. Math. J. 81(1996), no. 2, 269322. doi:10.1215/S0012-7094-96-08115-6
[15] Selberg, A., Old and new conjectures and results about a class of Dirichlet series. In: Proceedings of the Amalfi conference on analytic number theory (Maiori, 1989), Univ. Salermo, 1992, pp. 367385.
[16] Srinivas, K., Distinct zeros of functions in the Selberg class. Acta. Arith. 103(2002), no. 3, 201207. doi:10.4064/aa103-3-1
[17] Voros, A., A sharpening of Li's criterion for the Riemann hypothesis. Math. Phys. Anal. Geom. 9(2006), no. 1, 5363. doi:10.1007/s11040-005-9002-8
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed