Skip to main content Accessibility help

Orlicz–Besov Extension and Imbedding

  • Hongyan Sun (a1)


We establish criteria for Orlicz–Besov extension/imbedding domains via (global) $n$ -regular domains that generalize the known criteria for Besov extension/imbedding domains.



Hide All

The author was supported by the National Natural Science of Foundation of China (No. 11601494).



Hide All
[1] Adams, R. A. and Fournier, J. J. F., Sobolev spaces . Elsevier/Academic Press, Amsterdam, 2003.
[2] DeVore, R. A. and Sharpley, R. C., Besov spaces on domains in R d . Trans. Amer. Math. Soc. 335(1993), 843864.
[3] Grafakos, L., Classical and modern fourior analysis . Pearson Education, Upper Saddle River, NJ, 2004.
[4] Gogatishvili, A., Koskela, P., and Zhou, Y., Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces . Forum Math. 25(2013), 787819.
[5] Hajłasz, P., Koskela, P., and Tuominen, H., Sobolev imbeddings, extensions and measure density condition . J. Funct. Anal. 254(2008), 12171234.
[6] Hajłasz, P., Koskela, P., and Tuominen, H., Measure density and extendability of Sobolev functions . Rev. Mat. Iberoam. 24(2008), 645669.
[7] Jones, P. W., Extension theorems for BMO . Indiana Univ. Math. J. 29(1980), 4166.
[8] Jones, P. W., Quasiconformal mappings and extendability of functions in Sobolev spaces . Acta Math. 147(1981), 7188.
[9] Jonsson, A. and Wallin, H., A Whitney extension theorem in L p and Besov spaces . Ann. Inst. Fourier (Grenoble) 28(1978), 139192.
[10] Jonsson, A. and Wallin, H., Function spaces on subsets of ℝ n . Math. Rep. 2(1984), no. 1.
[11] Koskela, P., Extensions and imbeddings . J. Funct. Anal. 159(1998), 369384.
[12] Koskela, P., Zhang, Y., and Zhou, Y., Morrey-Sobolev extension domains . J. Geom. Anal. 27(2017), 14131434.
[13] Liang, T. and Zhou, Y., Orlicz-Besov extension and Ahlfors n-regular domains. arxiv:1901.06186
[14] Piaggio, M. C., Orlicz spaces and the large scale geometry of Heintze groups . Math. Ann. 368(2017), 433481.
[15] Rychkov, V. S., On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains . J. London Math. Soc. (2) 60(1999), 237257.
[16] Shvartsman, P., Local approximations and intrinsic characterizations of spaces of smooth functions on regular subsets of ℝ n . Math. Nachr. 279(2006), 12121241.
[17] Shvartsman, P., On extensions of Sobolev functions defined on regular subsets of metric measure spaces . J. Approx Theory 144(2007), 139161.
[18] Shvartsman, P., On Sobolev extension domains in R n . J. Funct. Anal. 258(2010), 22052245.
[19] Sun, H., Orlicz-Besov imbedding and globally n-regular domains. arxiv:1810.03796
[20] Stein, E. M., Singular integrals and differentiability properties of functions . Princeton Mathematical Series, 30, Princeton University Press, Princeton, NJ, 1970.
[21] Triebel, H., Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers . Rev. Mat. Complut. 15(2002), 475524.
[22] Triebel, H., Function spaces and wavelets on domains . EMS Tracts in Mathematics, 7, European Mathematical Society, Zürich, 2008.
[23] Wang, Z., Xiao, J., and Zhou, Y., Q 𝛼-extension and Ahlfors n-regular domains . Asian. J. Math.(2019), to appear.
[24] Zhou, Y., Fractional Sobolev extension and imbedding . Trans. Amer. Math. Soc. 367(2015), 959979.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed