Skip to main content Accessibility help
×
Home

Monoidal Categories, 2-Traces, and Cyclic Cohomology

  • Mohammad Hassanzadeh (a1), Masoud Khalkhali (a2) and Ilya Shapiro (a1)

Abstract

In this paper we show that to a unital associative algebra object (resp. co-unital co-associative co-algebra object) of any abelian monoidal category ( $\mathscr{C},\otimes$ ) endowed with a symmetric 2-trace, i.e., an $F\in \text{Fun}(\mathscr{C},\text{Vec})$ satisfying some natural trace-like conditions, one can attach a cyclic (resp. cocyclic) module, and therefore speak of the (co)cyclic homology of the (co)algebra “with coefficients in $F$ ”. Furthermore, we observe that if $\mathscr{M}$ is a $\mathscr{C}$ -bimodule category and $(F,M)$ is a stable central pair, i.e., $F\in \text{Fun}(\mathscr{M},\text{Vec})$ and $M\in \mathscr{M}$ satisfy certain conditions, then $\mathscr{C}$ acquires a symmetric 2-trace. The dual notions of symmetric 2-contratraces and stable central contrapairs are derived as well. As an application we can recover all Hopf cyclic type (co)homology theories.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Monoidal Categories, 2-Traces, and Cyclic Cohomology
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Monoidal Categories, 2-Traces, and Cyclic Cohomology
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Monoidal Categories, 2-Traces, and Cyclic Cohomology
      Available formats
      ×

Copyright

References

Hide All
[BFO] Bezrukavnikov, R., Finkelberg, M., and Ostrik, V., On tensor categories attached to cells in affine Weyl groups. III . Israel J. Math. 170(2009), 207234. https://doi.org/10.1007/s11856-009-0026-9.
[BS] Bohm, G. and Stefan, D., A categorical approach to cyclic duality . J. Noncommut. Geom. 6(2012), no. 3, 481538. https://doi.org/10.4171/JNCG/98.
[Co] Connes, A., Cohomologie cyclique et foncteurs Ext n . C. R. Acad. Sci. Paris Sér. I Math. 296(1983), no. 23, 953958.
[CM1] Connes, A. and Moscovici, H., Hopf algebras, cyclic cohomology and the transverse index theorem . Commun. Math. Phys. 198(1998), 199246. https://doi.org/10.1007/s002200050477.
[CM2] Connes, A. and Moscovici, H., Cyclic cohomology and Hopf algebras . Lett. Math. Phys. 48(1999), 97108. https://doi.org/10.1023/A:1007527510226.
[DP] Dold, A. and Puppe, D., Duality, trace, and transfer . Proceedings of the Steklov Institute of Mathematics, 154(1984), 85103.
[DSPS] Douglas, C. L., Schommer-Pries, C., and Snyder, N., Dualizable tensor categories. 2018. arxiv:1312.7188.
[EGNO] Etingof, P., Gelaki, S., Nikshych, D., and Ostrik, V., Tensor categories. Mathematical Surveys and Monographs, 205, American Mathematical Society, Providence, RI, 2015. https://doi.org/10.1090/surv/205.
[FSS] Fuchs, J., Schaumann, G., and Schweigert, C., A trace for bimodule categories . Appl. Categ. Structures 25(2017), no. 2, 227268. https://doi.org/10.1007/s10485-016-9425-3.
[HKRS1] Hajac, P. M., Khalkhali, M., Rangipour, B., and Sommerhauser, Y., Hopf-cyclic homology and cohomology with coefficients . C. R. Math. Acad. Sci. Paris 338(2004), no. 9, 667672. https://doi.org/10.1016/j.crma.2003.11.036.
[HKRS2] Hajac, P. M., Khalkhali, M., Rangipour, B., and Sommerhauser, Y., Stable anti-Yetter–Drinfeld modules . C. R. Acad. Sci. Paris Ser. I 338(2004), 587590. https://doi.org/10.1016/j.crma.2003.11.037.
[HPT] Henriques, A., Penneys, D., and Tener, J., Categorified trace for module tensor categories over braided tensor categories . Doc. Math. 21(2016), 10891149.
[JSV] Joyal, A., Street, R., and Verity, D., Traced monoidal categories . Math. Proc. Cambridge Philos. Soc. 119(1996), 447468. https://doi.org/10.1017/S0305004100074338.
[K1] Kaledin, D., Cyclic homology with coefficients . In: Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., 270, Birkhäuser Boston, Inc., Boston, MA, 2009, pp. 2347. https://doi.org/10.1007/978-0-8176-4747-6_2.
[K2] Kaledin, D., Trace theories and localization . In: Stacks and categories in geometry, topology, and algebra, Contemp. Math., 643, American Mathematical Society, Providence, RI, 2015, pp. 227262. https://doi.org/10.1090/conm/643/12900.
[Kassel] Kassel, C., Quantum groups. Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995. https://doi.org/10.1007/978-1-4612-0783-2.
[KP] Khalkhali, M. and Pourkia, A., Hopf cyclic cohomology in braided monoidal categories . Homology Homotopy Appl. 12(2010), no. 1, 111155. https://doi.org/10.4310/HHA.2010.v12.n1.a9.
[KS1] Kobyzev, I. and Shapiro, I., A categorical approach to cyclic cohomology of quasi-Hopf algebras and Hopf algebroids. 2018. arxiv:1803.09194.
[KS2] Kobyzev, I. and Shapiro, I., Anti-Yetter–Drinfeld modules for quasi-Hopf algebras. arxiv:1804.02031. 2018.
[Lo] Loday, J. L., Cyclic homology. Grundlehren der Mathematischen Wissenschaften, 301, Springer-Verlag, Berlin, 1992. https://doi.org/10.1007/978-3-662-21739-9.
[M1] Majid, S., Foundations of quantum group theory. Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511613104.
[M2] Majid, S., Quantum double for quasi-Hopf algebras . Lett. Math. Phys. 45(1998), no. 1, 19. https://doi.org/10.1023/A:1007450123281.
[P] Ponto, K., Relative fixed point theory . Algebr. Geom. Topol. 11(2011), 839886. https://doi.org/10.2140/agt.2011.11.839.
[PS] Ponto, K. and Shulman, M., Shadows and traces in bicategories . J. Homotopy Relat. Struct. 8(2013), 151200. https://doi.org/10.1007/s40062-012-0017-0.
[Sch] Schauenburg, P., Hopf modules and Yetter–Drinfel’d modules . J. Algebra 169(1994), 874890. https://doi.org/10.1006/jabr.1994.1314.
[Sh1] Shapiro, I., Some invariance properties of cyclic cohomology with coefficients. 2016. arxiv:1611.01425.
[Sh2] Shapiro, I., On the anti-Yetter–Drinfeld module-contramodule correspondence. 2017. arxiv:1704.06552.
[Y] Yetter, D., Quantum groups and representations of monoidal categories . Math. Proc. Cambridge Philos. Soc. 108(1990), no. 2, 261290. https://doi.org/10.1017/S0305004100069139.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Monoidal Categories, 2-Traces, and Cyclic Cohomology

  • Mohammad Hassanzadeh (a1), Masoud Khalkhali (a2) and Ilya Shapiro (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed