Skip to main content Accessibility help
×
Home

Graphs and k-Societies

  • Pavol Hell (a1) and Jaroslav Nešetřil (a1)

Extract

A graph G is a couple (X, R) where X is a set, R ⊂ X × X. If G is an undirected graph without loops (R a symmetric irreflexive relation), we can interpret G as a couple (X, R), where R is a set of two-element subsets of X, i.e. . This interpretation is generalized in the notion of society.

A society is a couple (X, R), where ; a k-society is a society (X, R) with |A| = k for each AR.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Graphs and k-Societies
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Graphs and k-Societies
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Graphs and k-Societies
      Available formats
      ×

Copyright

Footnotes

Hide All
(2)

Part of this paper was written while the authors were supported by the National Research Council of Canada.

(1)

Sometimes, instead of society (k-society), the words set-system (uniform set-system) or hypergraph are used.

Footnotes

References

Hide All
1. Berge, C., Theory of graphs and their applications, J. Wiley, New York, 1962.
2. Hedrlin, Z., Pultr, A.: Symetrie relations (undirected graphs) with given semigroup, Mhf. fiir Math. 68 (1965), 318-322.
3. Mendelsohn, E., Sips, products, and graphs with given semigroup, (to appear).
4. Pultr, A., On selecting ofmorphisms, CMUC (1), 8 (1967), 53-83.
5. Vopěnka, P., Pultr, A., Hedrlin, Z., A rigid relation exists on any set CMUC (2), 6 (1965), 149-155.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Graphs and k-Societies

  • Pavol Hell (a1) and Jaroslav Nešetřil (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed