Skip to main content Accessibility help

Embeddings of Müntz Spaces in $L^{\infty }(\unicode[STIX]{x1D707})$

  • Ihab Al Alam (a1) and Pascal Lefèvre (a2)


In this paper, we discuss the properties of the embedding operator $i_{\unicode[STIX]{x1D707}}^{\unicode[STIX]{x1D6EC}}:M_{\unicode[STIX]{x1D6EC}}^{\infty }{\hookrightarrow}L^{\infty }(\unicode[STIX]{x1D707})$ , where $\unicode[STIX]{x1D707}$ is a positive Borel measure on $[0,1]$ and $M_{\unicode[STIX]{x1D6EC}}^{\infty }$ is a Müntz space. In particular, we compute the essential norm of this embedding. As a consequence, we recover some results of the first author. We also study the compactness (resp. weak compactness) and compute the essential norm (resp. generalized essential norm) of the embedding $i_{\unicode[STIX]{x1D707}_{1},\unicode[STIX]{x1D707}_{2}}:L^{\infty }(\unicode[STIX]{x1D707}_{1}){\hookrightarrow}L^{\infty }(\unicode[STIX]{x1D707}_{2})$ , where $\unicode[STIX]{x1D707}_{1}$ , $\unicode[STIX]{x1D707}_{2}$ are two positive Borel measures on [0, 1] with $\unicode[STIX]{x1D707}_{2}$ absolutely continuous with respect to $\unicode[STIX]{x1D707}_{1}$ .



Hide All

This work is part of the project CEDRE ESFO. The authors would like to thank the program PHC CEDRE and the Lebanese University for their support.



Hide All
[1] Al Alam, I., Essential norm of weighted composition operator on Müntz spaces . J. Math. Anal. Appl. 358(2009), 273280.
[2] Al Alam, I., Gaillard, L., Habib, G., Lefèvre, P., and Maalouf, F., Essential norms of Cesàro operators on L p and Cesàro spaces . J. Math. Anal. Appl. 467(2018), no. 2, 10381065.
[3] Borwein, P. and Erdélyi, T., Polynomials and polynomial inequalities . Graduate Texts in Mathematics, 161. Springer-Verlag, New York, 1995.
[4] Chalendar, I., Fricain, E., and Timotin, D., Embeddings theorems for Müntz spaces . Ann. Inst. Fourier 61(2011), 22912311
[5] Gaillard, L. and Lefèvre, P., Lacunary Müntz spaces: isomorphisms and Carleson embeddings. arxiv:1701.05807.
[6] Schwartz, L., Etude des sommes d’exponentielles. Hermann, Paris, 1959.
[7] Waleed Noor, S., Embeddings of Müntz spaces: Composition operators . Integral Equations Operator Theory 73(2012), 589602.
[8] Waleed Noor, S. and Timotin, D., Embeddings of Müntz spaces: The Hilbertian case . Proc. Amer. Math. Soc. 141(2013), 20092023.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed