Skip to main content Accessibility help

Embedding Theorems for Dirichlet Type Spaces

  • Songxiao Li (a1), Junming Liu (a2) and Cheng Yuan (a2)


We use the Carleson measure-embedding theorem for weighted Bergman spaces to characterize the positive Borel measures $\unicode[STIX]{x1D707}$ on the unit disc such that certain analytic function spaces of Dirichlet type are embedded (compactly embedded) in certain tent spaces associated with a measure  $\unicode[STIX]{x1D707}$ . We apply these results to study Volterra operators and multipliers acting on the mentioned spaces of Dirichlet type.



Hide All

J. Liu is the corresponding author. This work was supported by NNSF of China (Grant No. 11801094 and No.11720101003).



Hide All
[1] Aleman, A. and Cima, J., An integral operator on H p and Hardy’s inequality . J. Anal. Math. 85(2001), 157176.
[2] Aleman, A. and Siskakis, A., Integral operators on Bergman spaces . Indiana Univ. Math. J. 46(1997), 337356.
[3] Arcozzi, N., Rochberg, R., and Sawyer, E., Carleson measures for analytic Besov spaces . Rev. Mat. Iberoam. 18(2002), 443510.
[4] Attele, K., Interpolating sequences for the derivatives of Bloch functions . Glasgow Math. J. 34(1992), 3541.
[5] Carleson, L., An interpolation problem for bounded analytic functions . Amer. J. Math. 80(1958), 921930.
[6] Carleson, L., Interpolations by bounded analytic functions and the corona problem . Ann. Math. 76(1962), 547559.
[7] Duren, P., Theory of H p spaces . Pure and Applied Mathematics, 38, Academic Press, New York, 1970.
[8] Duren, P. and Schuster, A., Bergman spaces . Mathematical Surveys and Monographs, 100, American Mathematical Society, Providence, RI, 2004.
[9] Galanopoulos, P., Girela, D., and Peláez, J., Multipliers and integration operators on Dirichlet spaces . Trans. Amer. Math. Soc. 363(2011), 18551886.
[10] Girela, D. and Peláez, J., Carleson measures for spaces of Dirichlet type . Integral Equations Operator Theory 55(2006), 415427.
[11] Girela, D. and Peláez, J., Carleson measures, multipliers and integration operators for spaces of Dirichlet type . J. Funct. Anal. 241(2006), 334358.
[12] Hastings, W., Carleson measure for Bergman spaces . Proc. Amer. Math. Soc. 52(1975), 237241.
[13] Hedenmalm, H., Korenblum, B., and Zhu, K., Theory of Bergman spaces . Graduate Texts in Mathematics, 199, Springer-Verlag, New York, 2000.
[14] Li, P., Liu, J., and Lou, Z., Integral operators on analytic Morrey spaces . Sci. China 57(2014), 19611974.
[15] Li, S. and Stević, S., Volterra type operators on Zygmund space . J. Inequal. Appl. 2007, Art. ID 32124, 10.
[16] Li, S. and Stević, S., Riemann–Stieltjes operators between 𝛼-Bloch spaces and Besov spaces . Math. Nachr. 282(2009), 899911.
[17] Liu, J. and Lou, Z., Carleson measure for analytic Morrey spaces . Nonlinear Anal. 125(2015), 423432.
[18] Liu, J., Lou, Z., and Zhu, K., Embedding of Möbius invariant function spaces into tent spaces . J. Geom. Anal. 27(2017), 10131028.
[19] Oleinik, V. and Pavlov, B., Imbedding theorems for weight classes of harmonic and analytic functions . (Russian) Zap. Naucn. Sem. Leninggrad. Otdel. Math. Inst. Steklov. (LOMI) 22(1971), 94102.
[20] Pau, J. and Zhao, R., Carleson measures, Riemann–Stieltjes and multiplication operators on a general family of function spaces . Integral Equations Operator Theory 78(2014), 483514.
[21] Peláez, J., Rättyä, J., and Sierra, K., Embedding Bergman spaces into tent spaces . Math. Z. 281(2015), 12151237.
[22] Pommerenke, C., Schlichte funktionen und analytische funktionen von beschränkter mittlerer oszillation . Comment. Math. Helv. 52(1977), 591602.
[23] Siskakis, A. and Zhao, R., A Volterra type operator on spaces of analytic functions . Contemp. Math. 232(1999), 299311.
[24] Stegenga, D., Multipliers of the Dirichlet space . Illinois J. Math. 24(1980), 113139.
[25] Tjani, M., Distance of a Bloch function to the little Bloch space . Bull. Austral. Math. Soc. 74(2006), 101119.
[26] Wang, J., The Carleson measure problem between analytic Morrey spaces . Canad. Math. Bull. 59(2016), 878890.
[27] Wu, Z., Carleson measures and multipliers for Dirichlet spaces . J. Funct. Anal. 169(1999), 148163.
[28] Xiao, J., The 𝓠p Carleson measure problem . Adv. Math. 217(2008), 20752088.
[29] Xiao, J., Holomorphic Q classes . Lecture Notes in Mathematics, 1767, Springer-Verlag, Berlin, 2001.
[30] Zhao, R., On a general family of function spaces . Ann. Acad. Sci. Fenn. Math. Diss. 105(1996).
[31] Zhu, K., Operator theory in function spaces , Second ed., Mathematical Surveys and Monographs, 138, American Mathematical Society, Providence, RI, 2007.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Embedding Theorems for Dirichlet Type Spaces

  • Songxiao Li (a1), Junming Liu (a2) and Cheng Yuan (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed