Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T11:58:30.060Z Has data issue: false hasContentIssue false

Differential Equation for Classical-Type Orthogonal Polynomials

Published online by Cambridge University Press:  20 November 2018

A. Ronveaux
Affiliation:
Math. Phys. Facultés Universitaires Notre-Dame de la Paix 5000 Namur, Belgium
F. Marcellan
Affiliation:
Departamento de Matematica Aplicada E.T.S. Ingenieros Industrials, Universidad Politecnica 28006 Madrid, España
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The second order differential equation of Littlejohn-Shore for Laguerre type orthogonal polynomials is generalized in two ways. First the positive Dirac mass can be situated at any point and secondly the weight can be any classical weight modified by an arbitrary number of Dirac distributions.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1989

References

1. Cachafeiro, A. and F. Marcellan, Polinomios ortogonales y medidas singulares sobre curvas, in Actas Jornadas Matematicas Hispano Lusas Badajoz, (1986) p. 128-139.Google Scholar
2. Chihara, T. S., Orthogonal polynomials and measures with end point masses, Rocky Mountain J. of Math. 15, 3, (1985), p. 705719.Google Scholar
3. Gautschi, W., A survey of Gauss Christoffel quadrature formulae, Christoffel Symposium, E. Butzer, Birkhàuser Verlag (1981), p. 73145.Google Scholar
4. Hendriksen, E. and H. Van Rossum, Semiclassical orthogonal polynomials, Lect. Notes in Math., Springer Verlag (1985) Vol. 1171, Cl. Brezinski et coll. éd., p. 354361.Google Scholar
5. Koornwinder, T. H., Orthogonal polynomials with weight function (1 — x)a(\ + x)@ + M6(x + 1) + N6(x - 1), Canad. Math. Bull. 27 (2) (1984), p. 205214.Google Scholar
6. Laguerre, E. N., Sur la réduction en fractions continues d'une fraction qui satisfait à une équation différentielle donnée, J. Math, pures et appl., 1 (1885), p. 135-165.Google Scholar
7. Littlejohn, L. L. and Shore, S. D., Non classical orthogonal polynomials as solutions to second order differential equations, Canad. Math. Bull. 25 (3), (1982), p. 291295.Google Scholar
8. Maroni, P., Une caractérisation des polynômes orthogonaux semi-classiques, C.R. Acad. Sci. Paris, 301, série 1, (1985), p. 269272.Google Scholar
9. Nevai, P., Orthogonal polynomials. Memoirs, Amer. Math. Soc, 213, Amer. Math. Soc, Providence, R.I., (1979).Google Scholar
10. Nikiforov, A. et V. Ouvarov, Eléments de la théorie des fonctions spéciales, Mir, Moscou, (1978).Google Scholar
11. Nikiforov, A. et Ouvarov, V., Fonctions spéciales de la Physique mathématique, Mir, Moscou, (1983).Google Scholar
12. Ronveaux, A., Sur l'équation différentielle du second ordre satisfaite par une classe de polynômes othogonaux semi-classiques, C.R. Acad. Sci. Paris, 305, Série 1, (1987) p. 163166.Google Scholar
13. Ronveaux, A. and Thiry, G., Differential equations of some orthogonal families in Reduce. J. of Symbolic Comp., in print.Google Scholar
14. Shohat, J., A differential equation for orthogonal polynomials, Duke Math. J. 5 (1939), p. 401417.Google Scholar
15. Uvarov, V. B., Relation between polynomials orthogonal with different weights, Dokl. Akad. Nauk, USSR, 126, p. 3336 (Russian), (1959).Google Scholar
16. Szegô, G., Orthogonal polynomials, fourth edition, Amer. Math. Soc, Providence, R.I., (1975).Google Scholar