Skip to main content Accessibility help
×
Home

Compact Commutators of Rough Singular Integral Operators

  • Jiecheng Chen (a1) and Guoen Hu (a2)

Abstract

Let $b\,\in \,\text{BMO}\left( {{\mathbb{R}}^{n}} \right)$ and ${{T}_{\Omega }}$ be the singular integral operator with kernel $\Omega \left( x \right)/{{\left| x \right|}^{n}}$ , where $\Omega$ is homogeneous of degree zero, integrable, and has mean value zero on the unit sphere ${{S}^{n-1}}$ . In this paper, using Fourier transform estimates and approximation to the operator ${{T}_{\Omega }}$ by integral operators with smooth kernels, it is proved that if $b\,\in \,\text{CMO}\left( {{\mathbb{R}}^{n}} \right)$ and $\Omega$ satisfies certain minimal size condition, then the commutator generated by $b$ and ${{T}_{\Omega }}$ is a compact operator on ${{L}^{p}}\left( {{\mathbb{R}}^{n}} \right)$ for appropriate index $p$ . The associated maximal operator is also considered.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Compact Commutators of Rough Singular Integral Operators
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Compact Commutators of Rough Singular Integral Operators
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Compact Commutators of Rough Singular Integral Operators
      Available formats
      ×

Copyright

References

Hide All
[1] Alvarez, J., Bagby, R., Kurtz, D., and Pérez, C., Weighted estimates for commutators of linear operators. Studia Math. 104 (1993), no. 2, 195209.
[2] Bourdaud, G., Lanze de Cristoforis, M., and Sickel, W., Functional calculus on BMO and related spaces. J. Funct. Anal. 189 (2002), no. 2, 515538. http://dx.doi.org/10.1006/jfan.2001.3847
[3] Calderon, A. P. and Zygmund, A., On the existence of certain singular integrals. Acta Math. 88 (1952), 85139. http://dx.doi.org/10.1007/BF02392130
[4] Calderon, A. P. and Zygmund, A., On singular integrals. Amer. J. Math. 78 (1956), 289309. http://dx.doi.org/10.2307/2372517
[5] Chen, J. and Zhang, C., Boundedness of rough singular integral operators an the Triebel-Lizorkin spaces. J. Math. Anal. Appl. 337 (2008), no. 2, 10481052. http://dx.doi.org/10.1016/j.jmaa.2007.04.026
[6] Chen, Y., Ding, Y., and Wang, X., Compactness of commutators for singular integrals on Morrey spaces. Canad. J. Math. 64 (2012), no. 2, 257281. http://dx.doi.org/10.4153/CJM-2011-043-1
[7] Coifman, R., Rochberg, R., and Weiss, G., Factorizaton theorems for Hardy spaces in several variables. Ann. of Math. 103 (1976), no. 3, 611635. http://dx.doi.org/10.2307/1970954
[8] Coifman, R. and Weiss, G., Extension of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83 (1977), no. 4, 569645. http://dx.doi.org/10.1090/S0002-9904-1977-14325-5
[9] Connett, W. C., Singular integrals near L1 In: Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math.,Williams Coll.,Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math., 35, American Mathematical Society, Providence, RI, 1979, pp. 163165..
[10] Duoandikoetxea, J., Weighted norm inequalities for homogeneous singular integrals. Trans. Amer. Math. Soc. 336 (1993), no. 2, 869880. http://dx.doi.org/10.1090/S0002-9947-1993-1089418-5
[11] Duoandikoetxea, J. and Rubio de Francia, J. L., Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 84 (1986), no. 3, 541561. http://dx.doi.org/10.1007/BF01388746
[12] Fan, D. and Pan, Y., Singular integral operators with rough kernels supported by subvarieties. Amer. J. Math. 119 (1997), no. 4, 799839. http://dx.doi.org/10.1353/ajm.1997.0024
[13] Fan, D., Guo, K. ,and Pan, Y., A note on rough singular integral operators. Math. Inequal. Appl. 2 (1999), no. 1, 7381.
[14] Grafakos, L., Estimates for maximal singular integrals. Colloq. Math. 96 (2003), no. 2, 167177. http://dx.doi.org/10.4064/cm96-2-2
[15] Grafakos, L., Classical Fourier analysis. Second ed., Graduate Texts in Mathematics, 249, Springer, New York, 2008.
[16] Grafakos, L. and Stefanov, A., Lp bounds for singular integrals and maximal singular integrals with rough kernels. Indiana Univ. Math. J. 47 (1998), no. 2, 455469.
[17] Hu, G., Lp boundedness for the commutator of a homogeneous singular integral operator. Studia Math. 154 (2003), no. 1, 1327. http://dx.doi.org/10.4064/sm154-1-2
[18] Hu, G., Lp(Rn)boundedness for a class of g-functions and applications. Hokkaido Math. J. 32 (2003), no. 3, 497521. http://dx.doi.org/10.14492/hokmj/1350659154
[19] Hu, G., Sun, Q., and Wang, X., Lp(Rn) bounds for commutators of convolution operators. Colloq. Math. 93 (2002), no. 1, 1120. http://dx.doi.org/10.4064/cm93-1-2
[20] Ricci, F. and Weiss, G., A characterization of H1(S-1)In: Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math.,Williams Coll.,Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math., 35, American Mathematical Society, Providence, RI, 289294..
[21] Seeger, A., Singular integral operators with rough convolution kernels. J. Amer. Math. Soc. 9 (1996), no. 1, 95105. http://dx.doi.org/10.1090/S0894-0347-96-00185-3
[22] Uchiyama, A., On the compactness of operators of Hankel type. Tohoku Math. J. 30 (1978), no. 1, 163171. http://dx.doi.org/10.2748/tmj/1178230105
[23] Watson, D. K., Weighted estimates for singular integrals via Fourier transform estimates. Duke Math. J. 60 (1990), no. 2, 389399. http://dx.doi.org/10.1215/S0012-7094-90-06015-6
[24] Yosida, K., Function analysis. Reprint of the sixth (1980) ed., Classics in Mathematics, Springer-Verlag, Berlin, 1995.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Compact Commutators of Rough Singular Integral Operators

  • Jiecheng Chen (a1) and Guoen Hu (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed