No CrossRef data available.
Published online by Cambridge University Press: 28 August 2019
Suppose that
$0<|\unicode[STIX]{x1D70C}|<1$
and
$m\geqslant 2$
is an integer. Let
$\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m}$
be the self-similar measure defined by
$\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m}(\cdot )=\frac{1}{m}\sum _{j=0}^{m-1}\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m}(\unicode[STIX]{x1D70C}^{-1}(\cdot )-j)$
. Assume that
$\unicode[STIX]{x1D70C}=\pm (q/p)^{1/r}$
for some
$p,q,r\in \mathbb{N}^{+}$
with
$(p,q)=1$
and
$(p,m)=1$
. We prove that if
$(q,m)=1$
, then there are at most
$m$
mutually orthogonal exponential functions in
$L^{2}(\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m})$
and
$m$
is the best possible. If
$(q,m)>1$
, then there are any number of orthogonal exponential functions in
$L^{2}(\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m})$
.
The research is supported in part by the NNSF of China (No. 11831007, No.11571099).
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between 28th August 2019 - 28th January 2021. This data will be updated every 24 hours.