Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T06:46:30.979Z Has data issue: false hasContentIssue false

Loss of Serum Response Factor Activity Is the Basis of Reduced C-FOS Expression in Aging Human Fibroblasts

Published online by Cambridge University Press:  29 November 2010

Peter W. Atadja
Affiliation:
University of Calgary Health Sciences Centre*
Karl T. Riabowol
Affiliation:
University of Calgary Health Sciences Centre*

Abstract

Human diploid fibroblasts undergo a limited number of population doublings in vitro and are used widely as a model of cellular aging. Despite growing evidence that cellular aging occurs as a result of altered gene expression, little is known about the activity of transcription factors in aging cells. Here we report that the dramatic reduction in the expression of the transcription factor FOS during cellular aging appears to be due to the inability of another transcription factor, serum response factor (SRF), to bind to its cognate site termed the serum response element (SRE) that is found upstream of several genes including the human c-fos gene. In contrast, the activities of proteins binding to the RNA polymerase “core” element TATA and to the cAMP response element (CRE) were maintained in senescing human fibroblasts. We present evidence that hyperphosphorylation of SRF is responsible for the decreased binding activity seen in late passage cells, as proposed previously for the FOS protein.

Résumé

Les fibroblastes diploïdes humains subissent un nombre limité de dédoublements de population in vitro et sont largement utilisés comme modèle de vieillissement cellulaire. Malgré l'évidence grandissante que le vieillissement cellulaire est dû à une modification de l'expression du gène, l'activité des facteurs de transcription des cellules âgées est encore mal connue. Ici, nous rapportons que la réduction dramatique de l'expression du facteur de transcription fos durant le vieillissement cellulaire semble due à l'incapacité d'un autre facteur de transcription, le facteur réponse de sérum (FRS), de se lier à son site de reconnaissance appelé élément de réponse du sérum (ERS). Ce site est situé en amont de plusieurs gènes comprenant le gène humain c-fos. À l'opposé, les activités des protéines liées à la boîte TATA de la polymérase ARN ainsi qu'à l'élément réponse AMPc sont conservées chez les fibroblastes humains vieillissants. Nous présentons l'évidence que l'hyperphosphorilation du FRS induit une baisse du pouvoir de liaison observée au cours des dernières divisions cellulaires comme ceci a été précédemment suggéré pour la protéine fos.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atadja, P.W., Stringer, K.S., & Riabowol, K.T. (1994). Loss of Serum Response Element-Binding Activity and Hyperphosphorylation of Serum Factor during Cellular Aging. Mol. Cell Biol., 14, 49914999.Google ScholarPubMed
Attar, R.M., & Gilman, M.Z. (1992). Expression cloning of a novel zinc finger protein that binds to the c-fos serum response element. Mol. Cell Biol., 12, 24322443.Google Scholar
Berkowitz, L.A., Riabowol, K.T., & Gilman, M.Z. (1989). Multiple sequence elements of a single functional class are required for cyclic AMP responsiveness of the mouse c-fos promoter. Mol. Cell. Biol., 9, 42724281.Google ScholarPubMed
Dignam, J.D., Lebowitz, R.M., & Roeder, R.G. (1983). Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nuc. Acid Res., 11, 14751489.CrossRefGoogle Scholar
Gilman, M.Z., Wilson, R.N., & Weinberg, R.A. (1986). Multiple protein-binding sites in the 5'-flanking region regulate c-fos expression. Mol. Cell. Biol., 6, 43054316.Google ScholarPubMed
Goldstein, S. (1990). Replicative Senescence: The human fibroblast comes of age. Science, 249, 11291133.CrossRefGoogle ScholarPubMed
Hai, T., Kiu, F., Allegretto, A.E., Karin, M., & Green, M.R. (1988). A family of immunologically related transcription factors that includes multiple forms of ATF and AP-1. Genes & Dev., 2, 12161226.CrossRefGoogle ScholarPubMed
Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res., 37, 614636.CrossRefGoogle ScholarPubMed
Hayflick, L., & Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp. Cell Res., 25, 585621CrossRefGoogle ScholarPubMed
Hipskind, R.A., Rao, Y.N., Mueller, C.G., Reddy, E.S., & Nordheim, A. (1991). Etsrelated protein Elk-1 is homologous to the c-fos regulatory factor p62TCF. Nature, 354, 531534.CrossRefGoogle Scholar
Holt, J.T., Venkat-Gopal, T., Moulton, A.D., & Nienhuis, A.W. (1986). Inducible production of c-fos antisense RNA inhibits 3T3 cell proliferation. Proc. Natl. Acad. Sci. USA, 83, 47944798.CrossRefGoogle ScholarPubMed
Hunter, T., & Karin, M. (1992). The regulation of transcription by phosphorylation. Cell, 70, 375387.CrossRefGoogle ScholarPubMed
Kovary, K., & Bravo, R. (1991). The Jun and Fos protein families are both required for cell cycle progression in fibroblasts. Mol. Cell Biol., 11, 44664472.Google ScholarPubMed
Kumazaki, T., Robetorye, R.S., Robetorye, S.C., & Smith, J.R. (1991). Fibronectin expression increases during in vitro cellular senescence: correlation with increased cell area. Exp. Cell Res., 195, 1319.CrossRefGoogle ScholarPubMed
Marais, R., Wynne, J., & Treisman, R. (1993). The SRF Accessory Protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell, 73, 381394.CrossRefGoogle ScholarPubMed
Martin, G.M., C.A. Sprague, C. A., & Epstein, C.J. (1970). Replicative lifespan of cultivated human cells: Effects of donor s age, tissue and genotype. Lab. Invest., 23, 8692.Google ScholarPubMed
McCormick, A., & Campisi, J. (1991). Cellular aging and senescence. Cell Biology, 3, 230234.Google ScholarPubMed
Misra, R.P., Y.M. Rivera, Y.M., Wang, J.M., Fan, P-D., & Greenberg, M.E. (1991). The serum response factor is extensively modified by phosphorylation following its synthesis in serum-stimulated fibroblasts. Mol. Cell. Biol., 11, 45454554.Google ScholarPubMed
Montminy, M.R., & Bilezikjian, M.S. (1987). Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature, 32, 175178.CrossRefGoogle Scholar
Murano, S.R., Thweatt, R., Shmookler-Reis, R.J., Jones, R.A., Moerman, E., & Goldstein, S. (1991). Diverse gene sequences are overexpressed in Werner syndrome fibroblasts undergoing premature replicative senescence. Mol. Cell Biol., 11, 39053914.Google ScholarPubMed
Nishikura, K., & Murray, J.M. (1987). Antisense RNA of proto-oncogene c-fos blocks renewed growth of quiescent 3T3 cells. Mol. Cell. Biol., 7, 639649.Google ScholarPubMed
Riabowol, K.T. (1992). Transcription factor activity during cellular aging of human diploid fibroblasts. Bioch. Cell Biol., 70, 1064–107.2CrossRefGoogle ScholarPubMed
Riabowol, K.T., Fink, J.S., Gilman, M.Z., Walsh, D.A., Goodman, R.H., & Feramisco, J.R. (1988). The catalytic subunit of cAMP-dependent protein kinase induces expression of genes containing cAMP-responsive enhancer sequences. Nature, 336, 8386.CrossRefGoogle Scholar
Riabowol, K. J., Schiff, J., & Gilman, M.Z. (1992). Transcription factor AP-1 activity is required for initiation of DNA synthesis and is lost during cellular aging. Proc. Natl. Acad. Sci. USA, 83, 33163328.Google Scholar
Riabowol, K.T., Vosatka, R.J., Ziff, E.B, Lamb, N.J., & J.R. Feramisco, J.R. (1988). Microinjection of fos-specific antibodies blocks DNA synthesis in fibroblast cells. Mol. Cell. Biol., 8, 16701676.Google ScholarPubMed
Richter, K.H., Afshari, C.A., Annab, L.A., Burkhart, B.A., Owen, R.D., Boyd, J., & Barrett, J.C. (1991). Down-regulation of cdc2 in senescent human and hamster cells. Cancer Res., 51, 60106030.Google ScholarPubMed
Rittling, S.R., Brooks, K.M., Cristofalo, V.J., & Baserga, R. (1986). Expression of cell cycle-dependent genes in young and senescent WI-38 fibroblasts. Proc. Natl. Acad. Sci. USA, 83, 33163320.CrossRefGoogle Scholar
Rivera, V.M., & Greenberg, M.E. (1990). Growth factor-induced gene expression: the ups and downs of c-fos regulation. New Biol., 2, 751758.Google ScholarPubMed
Robbins, P.D., Horowitz, J.M., & Mulligan, R.C. (1990). Negative regulation of human c-fos expression by the retinoblastoma gene product. Nature, 346, 669671.CrossRefGoogle ScholarPubMed
Rohme, D. (1981). Evidence for a relationship between longevity of mammalian species and lifespans of normal fibroblasts in vitro and erythrocytes in vivo. Proc. Natl. Acad. Sci. USA, 78, 50095013.CrossRefGoogle ScholarPubMed
Ryan, W.A. Jr, Franza, B.R. Jr, & Gilman, M.Z. (1989). Two distinct cellular phosphoproteins bind to the c-fos serum response element. EMBO J., 8, 17851792.CrossRefGoogle Scholar
Schroter, H., Mueller, C.G.F., Meese, K., & Nordheim, A. (1990). Synergism in ternary complex formation between the dimeric glycoprotein p67SRF, polypep-tide p62TCF and the c-fos serum response element. EMBO J., 9, 11231130.CrossRefGoogle Scholar
Sheshadri, T., & Campisi, J. (1990). Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science, 247, 205209.CrossRefGoogle Scholar
Smith, J.R., & Pereira-Smith, O.M. (1989). Altered gene expression during cellular aging. Genome, 32, 386389.CrossRefGoogle Scholar
Stein, G.H., Drullinger, L.F., Robetorye, R.S., Pereira-Smith, O.M., & Smith, J.R. (1991). Senescent cells fail to express cdc2, cycA, and cycB in response to mitogen stimulation. Proc. Natl. Acad. Sci. USA, 88, 1101211016.CrossRefGoogle ScholarPubMed
Stringer, K.F., Ingles, C.J., & Greenblatt, J. (1990). Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature, 345, 783786.CrossRefGoogle Scholar
Treisman, R. (1986). Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell, 46, 567574.CrossRefGoogle ScholarPubMed
Treisman, R. (1992). The serum response element. Trends in Biochem Sci., 17, 423426.CrossRefGoogle ScholarPubMed
Wagner, B.J., Hayes, T.E., Hoban, C.J., & Cochran, B.H. (1990). The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO. J., 9, 44774484.CrossRefGoogle ScholarPubMed
West, M.D., Pereira-Smith, O.M., & Smith, J.R. (1989). Replicative Senescence of Human Skin Fibroblasts Correlates with a Loss of Regulation and Overex-pression of Collagenase Activity. Exp. Cell Res., 184, 138147.CrossRefGoogle Scholar
Winkles, J.A., O'Connor, M.L., & Friesel, R. (1990). Altered regulation of platelet-derived growth factor A-chain and c-fos gene expression in senescent progeria fibroblasts. J. Cell. Physiol., 144, 313325.CrossRefGoogle ScholarPubMed