Hostname: page-component-cc8bf7c57-5wl6q Total loading time: 0 Render date: 2024-12-12T05:21:59.309Z Has data issue: false hasContentIssue false

Exercise Training Reduces Inflammatory Mediators in the Intestinal Tract of Healthy Older Adult Mice*

Published online by Cambridge University Press:  24 April 2012

Nicholas Packer*
Affiliation:
School of Public Health and Health Systems, University of Waterloo
Laurie Hoffman-Goetz*
Affiliation:
School of Public Health and Health Systems, University of Waterloo
*
Correspondence and requests for offprints should be sent to / La correspondance et les demandes de tirés-à-part doivent être adressées à: Laurie Hoffman-Goetz, Ph.D., M.P.H. School of Public Health and Health Systems Faculty of Applied Health Sciences University of Waterloo 200 University Avenue West Waterloo, ON N2L 3G1 (lhgoetz@uwaterloo.ca)
Correspondence and requests for offprints should be sent to / La correspondance et les demandes de tirés-à-part doivent être adressées à: Laurie Hoffman-Goetz, Ph.D., M.P.H. School of Public Health and Health Systems Faculty of Applied Health Sciences University of Waterloo 200 University Avenue West Waterloo, ON N2L 3G1 (lhgoetz@uwaterloo.ca)

Abstract

Aging is associated with increased intestinal inflammation and elevated risk of chronic diseases including inflammatory bowel diseases and colon cancer; many epidemiologic studies show that regular exercise reduces risk. This study examined the effects of long-term voluntary exercise on inflammatory mediators expressed in the intestine of older (15–16 months), healthy C57BL/6 mice. Animals were assigned to four months of freewheel running (WR; n = 20) or to a “sedentary” no wheel running (NWR; n = 20) control group. Intestinal lymphocytes were harvested and analysed for expression of (1) pro-inflammatory (TNF-α, IL-1β) and pleiotropic (IL-6) cytokines, and (2) pro-(caspase-3/-7) and anti-(Bcl-2) apoptotic proteins. Training was confirmed by skeletal muscle enzyme activity; stress was assessed by plasma 8-iso-PGF and corticosterone. The WR mice had a lower expression of TNF-α, caspase-7, and 8-isoprostanes (p < .05) compared to sedentary controls, suggesting that long-term exercise may “protect” the bowel by reducing inflammatory cytokine and apoptotic protein expression.

Résumé

Le vieillissement s’allie à une augmentation d’inflammation intestinale et le risque élevé de maladies chroniques, y compris les maladies inflammatoires de l’intestin et le cancer du côlon; nombreuses études épidémiologiques indiquent que l’exercice régulier réduit les risques. Cette étude a examiné les effets à long terme de l’exercice volontaire sur les médiateurs inflammatoires dans les intestins des souris âgées et en bonne santé C57BL/6 (âgées de 15–16 mois). On a désigné les animaux soit à quatre mois de roue d’exercice à souris (RES ; n – 20), soit à une groupe de contrôle « sédentaire » (NRL ; n = 20). Les lymphocytes intestinaux ont été récoltés et analysés pour la présence de (1) pro-inflammatoire (TNF-a, IL-1β) et de cytokines pléotropes (IL-6), et (2) de pro-(caspase-3/-7) et d’anti-(Bcl-2) protéines apoptotiques. L’efficacité d’exercise a été confirmée par l’activité des enzymes dans les muscles squelettiques ; l’évidence de stress a été confirmée par un plasma 8-iso-PGF et la corticostérone. Les RES souris ont réalisés une incidence inférieure de TNF-α, de la caspase-7, et de 8-isoprostanes (p < .05) par rapport aux contrôles sédentaires, ce qui suggère que l’exercice à long terme peut « protéger » l’intestin en réduisant la manifestation de cytokines inflammatoires et du protéine apoptotique.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

We thank Julia Guan for technical assistance. Research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. Nicholas Packer was the recipient of a Canadian Institutes of Health Research post-graduate scholarship.

References

Anisimov, V.N. (2009). Carcinogenesis and aging 20 years after: Escaping horizon. Mechanisms of Ageing and Development, 130(1–2), 105121.CrossRefGoogle ScholarPubMed
Bagh, M.B., Thakurta, I.G., Biswas, M., Behera, P., & Chakrabarti, S. (2011). Age-related oxidative decline of mitochondrial functions in rat brain is prevented by long term oral antioxidant supplementation. Biogerontology, 12(2), 119131.Google Scholar
Bernstein, C.N., Wajda, A., Svenson, L.W., MacKenzie, A., Koehoorn, M., Jackson, M., et al. . (2006). The epidemiology of inflammatory bowel disease in Canada: A population-based study. American Journal of Gastroenterology, 101(7), 1559–1168.CrossRefGoogle ScholarPubMed
Canadian Cancer Society’s Steering Committee on Cancer Statistics. (2011). Canadian cancer statistics 2011. Toronto, Ontario, Canada: Canadian Cancer Society.Google Scholar
Colditz, G.A., Cannuscio, C.C., & Frazier, A.L. (1997). Physical activity and reduced risk of colon cancer: Implications for prevention. Cancer Causes & Control, 8(4), 649667.Google Scholar
Compton, C.C., Fielding, L.P., Burgart, L.J., Conley, B., Cooper, H.S., Hamilton, S.R., et al. . (1999). Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement. Archives of Pathology & Laboratory Medicine, 124(7), 979994.CrossRefGoogle Scholar
Coppack, S.W. (2001). Pro-inflammatory cytokines and adipose tissue. The Proceedings of the Nutrition Society, 60, 349356.Google Scholar
Córdova, C., Lopes-E-Silva, F. Jr., Pires, A.S., Souza, V.C., Brito, C.J., Moraes, C.F., et al. . (2011). Long-term resistance training is associated with reduced circulating levels of IL-6, IFN-gamma and TNF-alpha in elderly women. Neuroimmunomodulation, 18(3), 165170.CrossRefGoogle ScholarPubMed
Coutinho-Camillo, C.M., Lourenço, S.V., Nishimoto, I.N., Kowalski, L.P., & Soares, F.A. (2010). Caspase expression in oral squamous cell carcinoma. Head & Neck, Nov 12. [Epub ahead of print].Google Scholar
Dai, Q., & Zhu, X. (2009). F2-isoprostanes and metabolite, and breast cancer risk. North American Journal of Medicine & Science, 2(3), 106108.CrossRefGoogle ScholarPubMed
Davidson, S.R., Burnett, M., & Hoffman-Goetz, L. (2006). Training effects in mice after long-term voluntary exercise. Medicine and Science in Sports and Exercise, 38, 250255.CrossRefGoogle ScholarPubMed
De Lisio, M., Kaczor, J.J., Phan, N., Tarnopolsky, M.A., Boreham, D.R., & Parise, G. (2011). Exercise training enhances the skeletal muscle response to radiation-induced oxidative stress. Muscle & Nerve, 43(1), 5864.Google Scholar
Demarzo, M.M., Martins, L.V., Fernandes, C.R., Herrero, F.A., Perez, S.E., Turatti, A., et al. . (2008). Exercise reduces inflammation and cell proliferation in rat colon carcinogenesis. Medicine and Science in Sports and Exercise, 40(4), 618621.CrossRefGoogle ScholarPubMed
Dobbs, R.J., Charlett, A., Purkiss, A.G., Dobbs, S.M., Weller, C., & Peterson, D.W. (1999). Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurologica Scandinavica, 100, 3441.CrossRefGoogle ScholarPubMed
Edwards, B.K., Ward, E., Kohler, B.A., Eheman, C., Zauber, A.G., Anderson, R.N., et al. . (2010). Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer, 116(3), 544573.CrossRefGoogle Scholar
Fagiolo, U., Cossarizza, A., Scala, E., Fanales-Belasio, E., Ortolani, C., Cozzi, E., et al. . (1993). Increased cytokine production in mononuclear cells of healthy elderly people. European Journal of Immunology, 23(9), 23752378.CrossRefGoogle ScholarPubMed
Fontanesi, F., Soto, I.C., Horn, D., & Barrientos, A. (2006). Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. American Journal of Physiology. Cell Physiology, 291(6), C1129C1147.Google Scholar
Garrido, P., de Blas, M., Del Arco, A., Segovia, G., & Mora, F. (2010). Aging increases basal but not stress-induced levels of corticosterone in the brain of the awake rat. Neurobiology of Aging, Apr 21. [Epub ahead of print].Google Scholar
Girard, I., & Garland, T. Jr. (2002). Plasma corticosterone response to acute and chronic voluntary exercise in female house mice. Journal of Applied Physiology, 92(4), 1553–1161.CrossRefGoogle ScholarPubMed
Gomez-Merino, D., Drogou, C., Guezennec, C.Y., & Chennaoui, M. (2007). Effects of chronic exercise on cytokine production in white adipose tissue and skeletal muscle of rats. Cytokine, 40, 2329.CrossRefGoogle ScholarPubMed
Gonzalez-Hermoso, F., Perez-Palma, J., Marchena-Gomez, J., Lorenzo-Rocha, N., & Medina-Arana, V. (2004). Can early diagnosis of symptomatic colorectal cancer improve the prognosis? World Journal of Surgery, 28(7), 716720.CrossRefGoogle ScholarPubMed
Grimm, M., Lazariotou, M., Kircher, S., Höfelmayr, A., Germer, C.T., von Rahden, B.H., et al. . (2010). Tumor necrosis factor-α is associated with positive lymph node status in patients with recurrence of colorectal cancer - indications for anti-TNF-α agents in cancer treatment. Analytical Cellular Pathology, 33(3), 151163.CrossRefGoogle ScholarPubMed
Grivennikov, S., Karin, E., Terzic, J., Mucida, D., Yu, G.Y., Vallabhapurapu, S., et al. . (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 15(2), 103113.CrossRefGoogle ScholarPubMed
Halle, M., & Schoenberg, M.H. (2009). Physical activity in the prevention and treatment of colorectal carcinoma. Deutsches Ärzteblatt International, 106(44), 722727.Google Scholar
Hoffman-Goetz, L., Pervaiz, N., & Guan, J. (2009). Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-alpha in intestinal lymphocytes. Brain, Behaviour, and Immunity, 23, 498506.Google Scholar
Hoffman-Goetz, L., Pervaiz, N., Packer, N., & Guan, J. (2010). Freewheel training decreases pro- and increases anti-inflammatory cytokine expression in mouse intestinal lymphocytes. Brain, Behaviour, and Immunity, 24(7), 11051115.CrossRefGoogle ScholarPubMed
Hoffman-Goetz, L., & Quadrilatero, J. (2003). Treadmill exercise in mice increases intestinal lymphocyte loss via apoptosis. Acta Physiologica Scandinavica, 179(3): 289297.Google Scholar
Hoffman-Goetz, L., & Spagnuolo, P.A. (2007). Freewheel exercise training modifies pro- and anti-apoptotic protein expression in mouse splenic lymphocytes. International Journal of Sports Medicine, 28(9), 787791.CrossRefGoogle ScholarPubMed
Huber, W.R., & Sierra, F. (2009). The longevity dividend: Why invest in basic aging research? Canadian Journal on Aging, 28(4), 391394.Google Scholar
Iliev, I.D., Mileti, E., Matteoli, G., Chieppa, M., & Rescigno, M. (2009). Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunology, 2(4), 340350.CrossRefGoogle ScholarPubMed
Jiang, Y., Walker, R.J., & Steinle, J.J. (2009). Age-associated increase in cleaved caspase 3 despite phosphorylation of IGF-1 receptor in the rat retina. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 64(11), 11541159.Google Scholar
Jung, Y.J., Isaacs, J.S., Lee, S., Trepel, J., & Neckers, L. (2003). IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. The FASEB Journal, 17(14), 21152117.Google Scholar
Kulaylat, M.N., & Dayton, M.T. (2010). Ulcerative colitis and cancer. Journal of Surgical Oncology, 101(8), 706712.Google Scholar
Kuwana, T., & Newmeyer, D.D. (2003). Bcl-2-family proteins and the role of mitochondria in apoptosis. Current Opinion in Cell Biology, 15, 691699.Google Scholar
Lamkanfi, M., & Kanneganti, T.D. (2010). Caspase-7: A protease involved in apoptosis and inflammation. International Journal of Biochemistry & Cell Biology, 42, 2124.Google Scholar
Lefrançois, L., & Lycke, N. (2001). Isolation of mouse small intestinal intraepithelial lymphocytes, Peyer’s patch, and lamina propria cells. Current Protocols in Immunology, Chapter 3: Unit 3.19.Google Scholar
Levine, A.D. (2000). Apoptosis: Implications for inflammatory bowel disease. Inflammatory Bowel Diseases, 6(3), 191205.CrossRefGoogle ScholarPubMed
Liu, K. (2010). Role of apoptosis resistance in immune evasion and metastasis of colon cancer. World Journal of Gastrointestinal Oncology, 2(11), 309406.CrossRefGoogle Scholar
Lira, F.S., Koyama, C.H., Yamashita, A.S., Rosa, J.C., Zanchi, N.E., Batista, M.L. Jr., et al. . (2009). Chronic exercise decreases cytokine production in healthy rat skeletal muscle. Cell Biochemistry and Function, 27(7), 458461.CrossRefGoogle ScholarPubMed
Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193, 265275.Google Scholar
Luo, Z., Bradley, C.J., Dahman, B.A., & Gardiner, J.C. (2010). Colon cancer treatment costs for Medicare and dually eligible beneficiaries. Health Care Financing Review, 31(1), 3550.Google Scholar
Lynch, H.T., & de la Chapelle, A. (1999). Genetic susceptibility to non-polyposis colorectal cancer. Journal of Medical Genetics, 36, 801818.Google ScholarPubMed
Mignini, F., Traini, E., Tomassoni, D., Vitali, M., & Streccioni, V. (2008). Leucocyte subset redistribution in a human model of physical stress. Clinical and Experimental Hypertension, 30(8), 720731.Google Scholar
Montine, T.J., Peskind, E.R., Quinn, J.F., Wilson, A.M., Montine, K.S., & Galasko, D. (2011). Increased cerebrospinal fluid F2-isoprostanes are associated with aging and latent Alzheimer’s disease as identified by biomarkers. Neuromolecular Medicine, 13(1), 3743.Google Scholar
Murlasits, Z., Cutlip, R.G., Geronilla, K.B., Rao, K.M., Wonderlin, W.F., & Always, S.E. (2006). Resistance training increases heat shock protein levels in skeletal muscle of young and old rats. Experimental Gerontology, 41(4), 398406.CrossRefGoogle ScholarPubMed
Nicklas, B.J., Hsu, F.C., Brinkley, T.J., Church, T., Goodpaster, B.H., Kritchevsky, S.B., et al. . (2008). Exercise training and plasma C-reactive protein and interleukin-6 in elderly people. Journal of the American Geriatrics Society, 56(11), 20452052.Google Scholar
Pedersen, B.K., & Fischer, C.P. (2007). Physiological roles of muscle-derived interleukin-6 in response to exercise. Current Opinion in Clinical Nutrition and Metabolic Care, 10(3), 265271.CrossRefGoogle ScholarPubMed
Pedersen, B.K., Steensberg, A., Keller, P., Keller, C., Fischer, C., Hiscock, N., et al. . (2003). Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Pflugers Archiv, 446(1), 916.Google Scholar
Pironti, A., Tadeu, V., Pedroni, A., Porcu, A., Manca, A., Massarelli, G., et al. . (2010). Role of routine small intestinal biopsy in adult patient with irritable bowel syndrome-like symptoms. Minerva Medica, 101, 129134.Google Scholar
Popivanova, B.K., Kitamura, K., & Wu, Y. (2008). Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. The Journal of Clinical Investigation, 118, 560570.Google Scholar
Powrie, F. (2004). Immune regulation in the intestine: A balancing act between effector and regulatory T cell responses. Annals of the New York Academy of Science, 1029, 132141.Google Scholar
Ridker, P.M., Rifai, N., Stampfer, M.J., & Hennekens, C.H. (2000). Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation, 101, 17671772.Google Scholar
Rizzo, M.R., Abbatecola, A.M., Barbieri, M., Vietri, M.T., Cioffi, M., Grella, R., et al. . (2008). Evidence for anti-inflammatory effects of combined administration of vitamin E and C in older persons with impaired fasting glucose: impact on insulin action. Journal of the American College of Nutrition, 27(4), 505511.CrossRefGoogle Scholar
Roberts, L.J., & Morrow, J.D. (2000). Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radical Biology & Medicine, 28(4), 505513.CrossRefGoogle ScholarPubMed
Samad, A.K., Taylor, R.S., Marshall, T., & Chapman, M.A. (2005). A meta-analysis of the association of physical activity with reduced risk of colorectal cancer. Colorectal Disease, 7(3), 204213.CrossRefGoogle ScholarPubMed
Singh, T., & Newman, A.B. (2010). Inflammatory markers in population studies of aging. Ageing Research Reviews, Dec 8. [Epub ahead of print].Google Scholar
Softley, A., Myren, J., Clamp, S.E., Bouchier, I.A., Watkinson, G., & de Dombal, F.T. (1988). Inflammatory bowel disease in the elderly patient. Scandavian Journal of Gastroenterology. Supplement, 144, 2730.Google ScholarPubMed
Stowe, R.P., Peek, M.K., Cutchin, M.P., & Goodwin, J.S. (2010). Plasma cytokine levels in a population-based study: Relation to age and ethnicity. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 65(4), 429433.Google Scholar
Strassmann, G., Jacob, C.O., Fong, M., & Bertolini, D.R. (1993). Mechanisms of paraneoplastic syndromes of colon-26: involvement of interleukin 6 in hypercalcemia. Cytokine, 5(5), 463468.Google Scholar
Swaroop, P.P. (2007). Inflammatory bowel diseases in the elderly. Clinics in Geriatric Medicine, 23(4), 809821, vi.Google Scholar
Szkaradkiewicz, A., Marciniak, R., Chudzicka-Strugała, I., Wasilewska, A., Drews, M., Majewski, P., et al. . (2009). Proinflammatory cytokines and IL-10 in inflammatory bowel disease and colorectal cancer patients. Archivum Immunologiae et therapie experimentalis, 57(4), 291294.CrossRefGoogle ScholarPubMed
Terzić, J., Grivennikov, S., Karin, E., & Karin, M. (2010). Inflammation and colon cancer. Gastroenterology, 138(6), 21012114.CrossRefGoogle ScholarPubMed
Thune, I., & Furberg, A.S. (2001). Physical activity and cancer risk: Dose-response and cancer, all sites and site-specific. Medicine and Science in Sports and Exercise, 33(6 Suppl), S530S550; discussion S609–S610.CrossRefGoogle ScholarPubMed
Turner, M.J., Kleeberger, S.R., & Lightfoot, J.T. (2005). Influence of genetic background on daily running-wheel activity differs with aging. Physiological Genomics, 22(1), 7685.CrossRefGoogle ScholarPubMed
Wang, Q., Zhang, H., Zhao, B., & Fei, H. (2009). IL-1beta caused pancreatic beta-cells apoptosis is mediated in part by endoplasmic reticulum stress via the induction of endoplasmic reticulum Ca2+ release through the c-Jun N-terminal kinase pathway. Molecular and Cellular Biochemistry, 324(1–2), 183190.CrossRefGoogle ScholarPubMed
Waters, R.P., Renner, K.J., Pringle, R.B., Summers, C.H., Britton, S.L., Koch, L.G., et al. . (2008). Selection for aerobic capacity affects corticosterone, monoamines and wheel-running activity. Physiology & Behavior, 93(4–5), 10441054.CrossRefGoogle ScholarPubMed
Waters, R.P., Renner, K.J., Summers, C.H., Watt, M.J., Forster, G.L., Koch, L.G., et al. . (2010). Selection for intrinsic endurance modifies endocrine stress responsiveness. Brain Research, 1357, 5361.Google Scholar
Wilson, J.A. (2008). Tumor necrosis factor alpha and colitis-associated colon cancer. New England Journal of Medicine, 358(25), 27332734.Google Scholar
Wolin, K.Y., Yan, Y., Colditz, G.A., & Lee, I.M. (2009). Physical activity and colon cancer prevention: A meta-analysis. British Journal of Cancer, 100(4), 611616.CrossRefGoogle ScholarPubMed
Wyllie, A.H. (2010). “Where, O death, is thy sting?” A brief review of apoptosis biology. Molecular Neurobiology, 42, 49.Google Scholar
Zauli, G., Milani, D., Rimondi, E., Baldini, G., Nicolin, V., Grill, V., et al. . (2003). TRAIL activates a caspase 9/7-dependent pathway in caspase 8/10-defective SK-N-SH neuroblastoma cells with two functional end points: Induction of apoptosis and PGE2 release. Neoplasia, 5(5), 457466.Google Scholar
Zhang, Y., Chong, E., & Herman, B. (2002). Age-associated increases in the activity of multiple caspases in Fisher 344 rat organs. Experimental Gerontology, 37(6), 777789.Google Scholar