Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T07:17:07.755Z Has data issue: false hasContentIssue false

Treadmill Training Effects on Neurological Outcome After Middle Cerebral Artery Occlusion in Rats

Published online by Cambridge University Press:  02 December 2014

Yea-Ru Yang
Affiliation:
Faculty and Institute of Physical Therapy, National Yang-Ming University, Shih-Pai, Taipei, Taiwan
Ray-Yau Wang
Affiliation:
Faculty and Institute of Physical Therapy, National Yang-Ming University, Shih-Pai, Taipei, Taiwan
Paulus Shyi-Gang Wang
Affiliation:
Department and Institute of Physiology, National Yang-Ming University, Shih-Pai, Taipei, Taiwan
Shang-Ming Yu
Affiliation:
Institute of Anatomy and Cell Biology, National Yang-Ming University, Shih-Pai, Taipei, Taiwan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Treadmill training is used for promoting rhythmical vigorous walking and for task-related training in patients with stroke. The neurological impact of treadmill training has not been established. The present investigation is aimed at (1) examining neurological changes over a four-week period after middle cerebral artery occlusion (MCAO) in rats and (2) assessing the impact of one-week, two-week and four-week treadmill training in MCAO rats.

Methods:

Male Sprague-Dawley rats were subjected to 60-minute right MCAO. All rats were randomly assigned to one of seven groups. Infarct volume and neurological score were measured.

Results:

Rats sacrificed 24 hours post MCAO had the largest infarct volumes (171.4 ± 14.4 mm3) and the highest neurological score (median: 2, range: 1-3). We noted that without treadmill training, infarct sizes and neurological score diminished with time. Treadmill training for at least one week further reduced infarct volume and significantly improved neurologic function in MCAO rats.

Conclusion:

Treadmill training after focal cerebral ischemia significantly improves neurological outcome in MCAO rats. Treadmill training may be beneficial for ischemic brain recovery.

Résumé:

RÉSUMÉ:Introduction:

L’entraînement sur tapis roulant est utilisé pour promouvoir la marche rythmique rapide et l’entraînement à la tâche chez les patients ayant subi un accident vasculaire cérébral. L’impact neurologique de l’entraînement sur tapis roulant n’a jamais été étudié. Cette étude vise à: 1) examiner les changements neurologiques qui surviennent dans les quatre premières semaines après l’occlusion de l’artère cérébrale moyenne (OACM) chez des rats et d’évaluer l’impact d’un entraînement sur tapis roulant de une, deux et quatre semaines chez des rats ayant subi une OACM.

Méthodes:

Des rats mâles Sprague-Dawley ont subi une OACM d’une durée de 60 minutes. Ils ont été divisés en sept groupes. Le volume de l’infarctus et le score neurologique ont été mesurés.

Résultats:

Les rats sacrifiés 24 heures après l’OACM avaient les plus gros infarctus (171,4 ± 14,4 mm3) et le score neurologique le plus élevé (médiane: 2; écart: 1 à 3). Sans entraînement sur tapis roulant, la taille de l’infarctus et le score neurologique diminuaient avec le temps. L’entraînement sur tapis roulant pendant au moins une semaine diminuait davantage le volume de l’infarctus et améliorait significativement la fonction neurologique des rats ayant subi une OACM.

Conclusions:

L’entraînement sur tapis roulant après une ischémie cérébrale focale améliore significativement l’issue neurologique chez les rats ayant subi une OACM. L’entraînement sur tapis roulant peut avoir un effet bénéfique sur la récupération après une ischémie cérébrale.

Type
Experimental Neurosciences
Copyright
Copyright © The Canadian Journal of Neurological 2003

References

1. Indredavik, B, Sbrdahl, SA, Bakke, F, Rokseth, R, Háheim, LL. Strokeunit treatment. Long-term effects. Stroke 1997;28:18611866.CrossRefGoogle Scholar
2. Stroke Unit Trialists’ Collaboration. Organised inpatient (strokeunit) care after stroke. In: The Cochrane Library, Issue 1, 2000.Google Scholar
3. Ernst, E. A review of stroke rehabilitation and physiotherapy. Stroke 1990;21:10811085.CrossRefGoogle ScholarPubMed
4. Moseley, AM, Stark, A, Cameron, ID, Pollock, A. Treadmill trainingand body weight support for walking after stroke. In: The Cochrane Library, Issue 4, 2000.Google Scholar
5. Carr, JH, Shepherd, RB. A Motor Relearning Programme for Stroke. Oxford: Butterworth Heinemann, 1982:138.Google Scholar
6. Barbeau, H, Rossignol, S. Recovery of locomotion after chronicspinalization in the adult cat. Brain Res 1987;412:8495.Google Scholar
7. Nudo, RJ, Barbay, S, Kleim, JA. Role of neuroplasticity in functionalrecovery after stroke. In: Levin, HS, Grafman, J, (Eds). Cerebral Reorganization of Function after Brain Damage. New York: Oxford University Press, 2000:168197.Google Scholar
8. Finch, L, Barbeau, H, Arsenault, B. Influence of body weight supporton normal human gait: development of a gait retraining strategy. Phys Ther 1991;71:842856.Google Scholar
9. Smith, GV, Silver, KH, Goldberg, AP, Macko, RF. “Task-oriented” exercise improves hamstring strength and spastic reflexes in chronic stroke patients. Stroke 1999;30:21122118.Google Scholar
10. Silver, KH, Macko, RF, Forrester, LW, Goldberg, AP, Smith, GV. Effects of aerobic treadmill training on gait velocity, cadence, and gait symmetry in chronic hemiparetic stroke: a preliminary report. Neurorehabil Neural Repair 2000;14:6571.CrossRefGoogle ScholarPubMed
11. Macko, RF, Smith, GV, Dobrovolny, CL, et al. Treadmill trainingimproves fitness reserve in chronic stroke patients. Arch Phys Med Rehabil 2001;82:879884.CrossRefGoogle ScholarPubMed
12. Richards, CL, Malouin, F, Wood-Dauphinee, S, et al. Task-specificphysical therapy for optimization of gait recovery in acute stroke patients. Arch Phys Med Rehab 1993;74:612620.CrossRefGoogle ScholarPubMed
13. Hesse, S, Bertelt, C, Jahnke, MT, et al. Treadmill training with partialbody weight support compared with physiotherapy in nonambulatory hemiparetic patients. Stroke 1995;26:976981.Google Scholar
14. Robinson, RG, Shoemaker, WJ, Schlumpf, M, Valk, T, Bloom, FE. Effect of experimental cerebral infarction in rat brain on catecholamines and behaviour. Nature 1975;255:332334.Google Scholar
15. Robinson, RG. Differential behavioral and biochemical effects ofright and left hemispheric cerebral infarction in the rat. Science 1979;205:707710.Google Scholar
16. Lin, TN, He, YY, Wu, G, Khan, M, Hsu, CY. Effect of brain edema oninfarct volume in a focal cerebral ischemia model in rats. Stroke 1993;24:117121.Google Scholar
17. Wang, RY, Yang, YR, Yu, SM. Protective effects of treadmill trainingon infarction in rats. Brain Res 2001;922:140143.Google Scholar
18. Siesjo, BK. Pathophysiology and treatment of focal cerebralischemia. Part II: Mechanisms of damage and treatment. J Neurosurg 1992;77:337354.CrossRefGoogle Scholar
19. Siesjo, BK, Katsura, K, Zhao, Q, et al. Mechanisms of secondarybrain damage in global and focal ischemia: a speculative synthesis. J Neurotrauma 1995;12:943956.Google Scholar
20. Bederson, JB, Pitts, LH, Tsuji, M, et al. Rat middle cerebral arteryocclusion: evaluation of the model and development of a neurologic examination. Stroke 1986;17:472476.Google Scholar
21. Germano, IM, Bartkowski, HM, Cassel, ME, Pitts, LH. Thetherapeutic value of nimodipine in experimental focal cerebral ischemia. Neurological outcome and histopathological findings. J Neurosurg 1987;67:8187.Google Scholar
22. Menzies, SA, Hoff, JT, Betz, AL. Middle cerebral artery occlusion inrat: a neurological and pathological evaluation of a reproducible model. Neurosurgery 1992;31:100107.Google Scholar
23. Swanson, RA, Morton, MT, Tsao-Wu, G, et al. A semiautomatedmethod for measuring brain infarct volume. J Cereb Blood FlowMetab 1990;10:290293.CrossRefGoogle ScholarPubMed
24. Aspey, BS, Cohen, S, Patel, Y, Terruli, M, Harrison, MJG. Middlecerebral artery occlusion in the rat: consistent protocol for amodel of stroke. Neuropathol Appl Neurobiol 1998;24:487497.CrossRefGoogle Scholar
25. Persson, L, Hárdemark, HG, Bolander, HG, Hillered, L, Olsson, Y. Neurologic and neuropathologic outcome after middle cerebral artery occlusion in rats. Stroke 1989;20:641645.Google Scholar
26. Bederson, JB, Pitts, LH, Germano, SM, et al. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 1986;17:13041308.CrossRefGoogle ScholarPubMed
27. Chen, ST, Hsu, CY, Hogan, EL, Maricq, H, Balentine, JD. A model offocal ischemic stroke in the rat: reproducible extensive corticalinfarction. Stroke 1986;17:738743.Google Scholar
28. Liszczak, TM, Hedley-Whyte, ET, Adams, JF, et al. Limitation oftetrazolium salts in delineating infarcted brain. Acta Neuropathol 1984;65:150157.Google Scholar
29. Mackay, KB, Bailey, SJ, King, PD, et al. Neuroprotective effect ofrecombinant neutrophil inhibitory factor in transient focal cerebral ischemia in the rat. Neurodegeneration 1996;5:319323.Google Scholar
30. Witte, OW. Lesion-induced plasticity as a potential mechanism forrecovery and rehabilitative training. Curr Opin Neurol 1998;11:655662.CrossRefGoogle Scholar
31. Witte, OW, Stoll, G. Delayed and remote effects of focal corticalinfarctions: secondary damage and reactive plasticity. Adv Neurol 1997;73:207227.Google Scholar
32. Reinicke, S, Lutzenburg, M, Hagemann, G, Witte, OW. Electrophysiological transcortical diaschisis after middle cerebral artery occlusion in rat [abstract]. Eur J Neurosci 1998;10:225.Google Scholar
33. Witte, OW, Buchkremer-Ratzmann, I, Schiene, K, et al. Lesion-induced network plasticity in remote brain areas. Trends Neurosci 1997;20:348349.Google Scholar
34. Hagemann, G, Redecker, C, Neumann-Haefelin, T, Freund, HJ, Witte, OW. Increased long-term potentiation in the surround of experimentally induced focal cortical infarction. Ann Neurol 1998;44:255258.Google Scholar
35. Nudo, RJ, Wise, BM, SiFuentes, F, Milliken, GW. Neural substratesfor the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996;272:17911794.Google Scholar
36. Ostendorf, CG, Wolf, SL. Effect of forced use of the upper extremityof a hemiplegic patient on changes in function. A single-case design. Phys Ther 1981;61:10221028.CrossRefGoogle ScholarPubMed
37. Taub, E, Miller, NE, Novack, TA, et al. Technique to improve chronicmotor deficit after stroke. Arch Phys Med Rehab 1993;74:347354.Google ScholarPubMed
38. Wolf, SL, Lecraw, DE, Barton, LA, Jann, BB. Forced use ofhemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol 1989;104:125132.Google Scholar
39. Yu, J. Functional recovery with and without training following braindamage in experimental animals: a review. Arch Phys Med Rehabil 1976;57:3841.Google Scholar
40. Berne, RM, Levy, MN, (Eds). Physiology. St. Louis: Mosby-YearBook, 1993:534535.Google Scholar
41. Kassell, NF, Peerless, SJ, Durward, QJ, et al. Treatment of ischemicdeficits from vasospasm with intravascular volume expansion and induced arterial hypertension. Neurosurgery 1982;11:337343.Google Scholar
42. Auer, RN. Non-pharmacologic (physiologic) neuroprotection in thetreatment of brain ischemia. Ann NY Acad Sci 2001;939:271282.CrossRefGoogle Scholar
43. Ide, K, Horn, A, Secher, NH. Cerebral metabolic response tosubmaximal exercise. J Appl Physiol 1999;87:16041608.Google Scholar
44. Peerless, SJ, Ishikawa, R, Hunter, IG, Peerless, MJ. Protective effectof Fluosol-DA in acute cerebral ischemia. Stroke 1981;12:558563.CrossRefGoogle Scholar
45. Watson, JC, Doppenberg, EM, Bullock, MR, et al. Effects of theallosteric modification of hemoglobin on brain oxygen and infarct size in a feline model of stroke. Stroke 1997;28:16241630.Google Scholar
46. Ginsberg, MD, Sternau, LL, Globus, MY, Dietrich, WD, Busto, R. Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc Brain Metab Rev 1992;4:189225.Google Scholar
47. Jones, TA, Chu, CJ, Grande, LA, Gregory, AD. Motor skills trainingenhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 1999;19:1015310163.CrossRefGoogle ScholarPubMed
48. Li, Y, Jiang, N, Powers, C, Chopp, M. Neuronal damage and plasticityidentified by microtubule-associated protein 2, growth-associated protein 43, and cyclin D1 immunoreactivity after focal cerebral ischemia in rats. Stroke 1998;29:19721980.Google Scholar
49. Wei, J, WeiGang, G, Thomas, B, Roland, R, Per, W. Corticalneurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke 2001;32:12011207.Google Scholar
50. Wei, L, Erinjeri, JP, Rovainen, CM, Woolsey, TA. Collateral growthand angiogenesis around cortical stroke. Stroke 2001;32:21792184.Google Scholar
51. van Praag, H, Kempermann, G, Gage, FH. Running increases cellproliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 1999;2:266270.Google Scholar
52. Kleim, JA, Cooper, NR, Vanden Berg, PM. Exercise inducesangiogenesis but does not alter movement representations within rat motor cortex. Brain Res 2002;934:16.Google Scholar
53. Ohlsson, AL, Johansson, BB. The environment influences functionaloutcome of cerebral infarction in rats. Stroke 1995;26:644649.Google Scholar
54. Johansson, BB, Ohlsson, AL. Environment, social interaction andphysical activity as determinants of functional outcome after cerebral infarction in the rat. Exp Neurol 1996;139:322327.CrossRefGoogle Scholar
55. Humm, JL, Kozlowski, DA, James, DC, Gotts, JE, Schallert, T. Use-dependent exacerbation of brain damage occurs during an early postlesion vulnerable period. Brain Res 1998;783:286292.CrossRefGoogle ScholarPubMed
56. Risedal, A, Zeng, J, Johansson, BB. Early training may exacerbatebrain damage after focal brain ischemia in the rat. J Cereb Blood Flow Metab 1999;19:9971003.Google Scholar
57. Bland, ST, Schallert, T, Strong, R, Aronowski, J, Grotta, JC. Earlyexclusive use of the affected forelimb after moderate transient focal ischemia in rats: functional and anatomic outcome. Stroke 2000;31:11441152 Google Scholar