Skip to main content Accessibility help
×
Home

The Role of the Cerebellum in the Pathophysiology of Parkinson's Disease

  • Mechelle M. Lewis (a1) (a2), Shawna Galley (a3), Samantha Johnson (a3), James Stevenson (a3), Xuemei Huang (a1) (a2) (a4) (a5) (a6) (a7) and Martin J. McKeown (a3) (a8) (a9) (a10)...

Abstract

Parkinson's disease (PD), the most common neurodegenerative movement disorder, has traditionally been considered a “classic” basal ganglia disease, as the most obvious pathology is seen in the dopaminergic cells in the substantia nigra pars compacta. Nevertheless recent discoveries in anatomical connections linking the basal ganglia and the cerebellum have led to a re-examination of the role of the cerebellum in the pathophysiology of PD. This review summarizes the role of the cerebellum in explaining many curious features of PD: the significant variation in disease progression between individuals; why severity of dopaminergic deficit correlates with many features of PD such as bradykinesia, but not tremor; and why PD subjects with a tremor-predominant presentation tend to have a more benign prognosis. It is clear that the cerebellum participates in compensatory mechanisms associated with the disease and must be considered an essential contributor to the overall pathophysiology of PD.

Résumé:

La Maladie de Parkinson (MP), le trouble du mouvement de nature neurodégénérative le plus fréquent, a traditionnellement été considérée comme une maladie « classique » des noyaux gris centraux, étant donné que la pathologie la plus évidente se retrouve dans les cellules dopaminergiques de la substance noire de la pars compacta. Néanmoins, des découvertes récentes concernant les connections anatomiques liant les noyaux gris centraux et le cervelet ont mené à un nouvel examen du rôle du cervelet dans la physiopathologie de la MP. Cette revue explique de façon résumée plusieurs aspects singuliers de la MP dans lesquels le cervelet joue un rôle : la variation importante dans la progression de la maladie entre les patients ; pourquoi la sévérité du déficit dopaminergique est en corrélation avec plusieurs manifestations de la MP telle la bradykinésie, mais non avec le tremblement ; et pourquoi les patients chez qui le tremblement prédomine ont tendance à avoir un meilleur pronostic. il est certain que le cervelet participe à des mécanismes compensatoires associés à la maladie et sa contribution doit être considérée comme essentielle à la physiopathologie globale de la MP.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Role of the Cerebellum in the Pathophysiology of Parkinson's Disease
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Role of the Cerebellum in the Pathophysiology of Parkinson's Disease
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Role of the Cerebellum in the Pathophysiology of Parkinson's Disease
      Available formats
      ×

Copyright

Corresponding author

Neurology, Pacific Parkinson's Research Centre, Brain Research Centre, University of British Columbia, M31, Purdy Pavillion, Vancouver, British Columbia, V6T 2B5, Canada. Email: martin.mckeown@ubc.edu

References

Hide All
1. Jankovic, J, McDermott, M, Carter, J, et al. Variable expression of Parkinson's disease: a base-line analysis of the DATATOP cohort. The Parkinson Study Group. Neurology. 1990;40: 1529–34.
2. Hoehn, MM, Yahr, MD. Parkinsonism - onset progression and mortality. Neurology. 1967;17(5):427–42.
3. Guillard, A, Chastang, C. Long-term prognostic factors in Parkinson's disease. Rev Neurol. 1978;134(5):341–54.
4. Guillard, A, Chastang, C, Fenelon, G. Long-term study of 416 cases of Parkinson disease. Prognostic factors and therapeutic implications. Rev Neurol. 1986;142(3):207–14.
5. Goetz, CG, Tanner, CM, Stebbins, GT, Buchman, AS. Risk factors for progression in Parkinson's disease. Neurology. 1988;38(12): 1841–4.
6. Jankovic, J, Kapadia, AS. Functional decline in Parkinson disease. Arch Neurol. 2001;58(10):1611–15.
7. Marras, C, Rochon, P, Lang, AE. Predicting motor decline and disability in Parkinson disease: a systematic review. Arch Neurol. 2002;59(11):1724–8.
8. Koller, WC, Hubble, JP. Levodopa therapy in Parkinson's disease. Neurology. 1990;40(Suppl 3):40–7.
9. Marjama-Lyons, J, Koller, W. Tremor-predominant Parkinson's disease. Approaches to treatment. Drugs Aging. 2000;16(4): 273–8.
10. Vingerhoets, FJ, Schulzer, M, Calne, DB, Snow, BJ. Which clinical sign of Parkinson's disease best reflects the nigrostriatal lesion? Ann Neurol. 1997;41(1):5864.
11. Afifi, AK, Bergman, RA. Functional Neuroanatomy: text and atlas. New York: McGraw-Hill; 1998.
12. Alexander, GE, DeLong, MR, Strick, PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9(1):357–81.
13. Middleton, FA, Strick, PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev. 2000;31:236–50.
14. Jueptner, M, Weiller, C. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain. 1998;121(Pt 8):1437–49.
15. Bar-Gad, I, Bergman, H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol. 2001;11(6):689–95.
16. Mushiake, H, Strick, PL. Pallidal neuron activity during sequential arm movements. J Neurophysiol. 1995;74(6):2754–8.
17. van Donkelaar, P, Stein, JF, Passingham, RE, Miall, RC. Neuronal activity in the primate motor thalamus during visually triggered and internally generated limb movements. J Cereb Blood Flow Metab. 1999;16:2333.
18. van Donkelaar, P, Stein, JF, Passingham, RE, Miall, RC. Temporary inactivation in the primate motor thalamus during visually triggered and internally generated limb movements. J Neurophysiol. 2000;83(5):2780–90.
19. Blakemore, SJ, Frith, CD, Wolpert, DM. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport. 2001;12(9):1879–84.
20. Miall, RC, Jenkinson, EW. Functional imaging of changes in cerebellar activity related to learning during a novel eye-hand tracking task. Exp Brain Res. 2005;166(2):170–83.
21. Jueptner, J, Jueptner, M, Jenkins, IH, Brooks, DJ, Frackowiak, RSJ, Passingham, RE. The sensory guidance of movement: a comparison of the cerebellum and basal ganglia. Exp Brain Res. 1996;112(3):462–74.
22. Cerasa, A, Hagberg, GE, Peppe, A, et al. Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson's disease. Brain Res Bull. 2006 Dec;71(1-3):259–69.
23. Gowen, E, Miall, R. Differentiation between external and internal cuing: An fMRI study comparing tracing with drawing. Neuroimage. 2007;36(2):396410.
24. Purzner, J, Paradiso, GO, Cunic, D, et al. Involvement of the basal ganglia and cerebellar motor pathways in the preparation of self-initiated and externally triggered movements in humans. J Neurosci. 2007;27(22):6029.
25. MacMillan, ML, Dostrovsky, JO, Lozano, AM, Hutchison, WD. Involvement of human thalamic neurons in internally and externally generated movements. Am Physiol Soc; 2004. p. 1085-90.
26. Vaillancourt, DE, Thulborn, KR, Corcos, DM. Neural basis for the processes that underlie visually guided and internally guided force control in humans. J Neurophsyiol. 2003;90(5):3330–40.
27. Borghammer, P, Østergaard, K, Cumming, P, et al. A deformation-based morphometry study of patients with early-stage Parkinson's disease. Eur J Neurol. 2010;17(2):314–20.
28. Linder, J, Birgander, R, Olsson, I, et al. Degenerative changes were common in brain magnetic resonance imaging in patients with newly diagnosed Parkinson's disease in a population-based cohort. J Neurol. 2009;256(10):1671–80.
29. Messina, D, Cerasa, A, Condino, F, et al. Patterns of brain atrophy in Parkinson's disease, progressive supranuclear palsy and multiple system atrophy. Parkinsonism Relat Disord. 2011;17(3):172–6.
30. Molnar, GF, Pilliar, A, Lozano, AM, Dostrovsky, JO. Differences in neuronal firing rates in pallidal and cerebellar receiving areas of thalamus in patients with Parkinson's disease, essential tremor, and pain. J Neurophysiol. 2005;93(6):3094–101.
31. Narabayashi, H, Maeda, T, Yokochi, F. Long-term follow-up study of nucleus ventralis intermedius and ventrolateralis thalamotomy using a microelectrode technique in parkinsonism. App Neurophysiol. 1987;50(1-6):330–7.
32. Jellinger, KA. Pathology of Parkinson's disease. Mol Chem Neuropathol. 1991;14(3):153–97.
33. Devi, L, Raghavendran, V, Prabhu, BM, Avadhani, NG, Anawdatheerthavarada, HK. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008 Apr 4;283(14):9089–100.
34. Engelender, S, Kaminsky, Z, Guo, X, et al. Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet. 1999;22(1):110–14.
35. Nuber, S, Franck, T, Wolburg, H, et al. Transgenic overexpression of the alpha-synuclein interacting protein synphilin-1 leads to behavioral and neuropathological alterations in mice. Neurogenetics. 2010;11(1):107–20.
36. Louis, ED, Yi, H, Erickson-Davis, C, Vonsattel, JPG, Faust, PL. Structural study of Purkinje cell axonal torpedoes in essential tremor. Neurosci Lett. 2009;450(3):287–91.
37. Bostan, AC, Dum, RP, Strick, PL. The basal ganglia communicate with the cerebellum. P Natl Acad Sci USA. 2010;107(18): 8452–6.
38. Hoshi, E, Tremblay, L, Feger, J, Carras, PL, Strick, PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8:1491–3.
39. Lewis, MM, Du, G, Sen, S, et al. Differential involvement of striato-and cerebello-thalamo-cortical pathways in tremor-and akinetic/rigid-predominant Parkinson's disease. Neurosci. 2011 Mar 17;177:230–9.
40. Bostan, AC, Strick, PL. The cerebellum and basal ganglia are interconnected. Neuropsychol Rev. 2010;20(3):261–70.
41. Hurley, MJ, Mash, DC, Jenner, P. Markers for dopaminergic neurotransmission in the cerebellum in normal individuals and patients with Parkinson's disease examined by RT-PCR. Eur J Neurosci.18(9):2668–72.
42. Courtemanche, R, Pellerin, J-P, Lamarre, Y. Local field potential oscillations in primate cerebellar cortex: modulation during active and passive expectancy. J Neurophysiol. 2002;88(2): 771–82.
43. Courtemanche, R, Lamarre, Y. Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol. 2005;93 (4):2039–52.
44. Courtemanche, R, Fujii, N, Graybiel, AM. Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J Neurosci. 2003 Dec 17;23(37):1174152.
45. Brown, P, Oliviero, A, Mazzone, P, Insola, A, Tonali, P, Di Lazzaro, V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease. J Neurosci. 2001; 21(3):1033.
46. Raz, A, Frechter-Mazar, V, Feingold, A, Abeles, M, Vaadia, E, Bergman, H. Activity of pallidal and striatal tonically active neurons is correlated in MPTP-treated monkeys but not in normal monkeys. J Neurosci. 2001;21(3):RC128.
47. Williams, D, Tijssen, M, Van Bruggen, G, et al. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain. 2002 Jul;125(Pt 7):1558–69.
48. Schnitzler, A, Gross, J. Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci. 2005;6:113.
49. Poirier, LJ, Pechadre, JC, Larochelle, L, Dankova, J, Boucher, R. Stereotaxic lesions and movement disorders in monkeys. Adv Neurol. 1975;10:522.
50. Burns, RS, Chiueh, CC, Markey, SP, Ebert, MH, Jacobowitz, DM, Kopin, IJ. A primate model of Parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. P Natl Acad Sci USA. 1983;80(14):4546–50.
51. Ni, Z, Pinto, AD, Lang, AE, Chen, R. Involvement of the cerebellothalamocortical pathway in Parkinson disease. Ann Neurol. 2010;68(6):816–24.
52. Cohen, O, Pullman, S, Jurewicz, E, Watner, D, Louis, ED. Rest tremor in patients with essential tremor: prevalence, clinical correlates, and electrophysiologic characteristics. Arch Neurol. 2003;60 (3):405.
53. Minen, MT, Louis, ED. Emergence of Parkinson's disease in essential tremor: a study of the clinical correlates in 53 patients. Mov Dis. 2008;23(11):1602–5.
54. Pechadre, JC, Larochelle, L, Poirier, LJ. Parkinsonian akinesia, rigidity and tremor in the monkey. Histopathological and neuropharmacological study. J Neurol Sci. 1976;28(2):147–57.
55. Marsden, CD, Obeso, JA. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain. 1994;117:877–97.
56. Hua, S, Reich, SG, Zirh, AT, Perry, V, Dougherty, PM, Lenz, FA. The role of the thalamus and basal ganglia in parkinsonian tremor. Mov Dis. 1998;13 Suppl 3:40–2.
57. Lenz, FA, Kwan, HC, Martin, RL, Tasker, RR, Dostrovsky, JO, Lenz, YE. Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain. 1994;117(Pt 3):531–43.
58. Inase, M, Tanji, J. Thalamic distribution of projection neurons to the primary motor cortex relative to afferent terminal fields from the globus pallidus in the macaque monkey. J Comp Neurol. 1995; 353(3):415–26.
59. Benabid, AL, Pollak, P, Gervason, C, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337(8738):403–6.
60. Caparros-Lefebvre, D, Blond, S, Vermersch, P, Pecheux, N, Guieu, JD, Petit, H. Chronic thalamic stimulation improves tremor and levodopa induced dyskinesias in Parkinson's disease. J Neurol Neurosurg Psychiatry. 1993;56(3):268–73.
61. Koller, W, Pahwa, R, Busenbark, K, et al. High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol. 1997;42(3):292–9.
62. Limousin-Dowsey, P, Pollak, P, Van Blercom, N, Krack, P, Benazzouz, A, Benabid, A. Thalamic, subthalamic nucleus and internal pallidum stimulation in Parkinson's disease. J Neurol. 1999;246 Suppl 2:II425.
63. Lenz, FA, Normand, SL, Kwan, HC, et al. Statistical prediction of the optimal site for thalamotomy in parkinsonian tremor. Mov Dis. 1995;10(3):318–28.
64. Jankovic, J, Cardoso, F, Grossman, RG, Hamilton, WJ. Outcome after stereotactic thalamotomy for parkinsonian, essential, and other types of tremor. Neurosurgery. 1995;37(4):680–7.
65. Mure, H, Hirano, S, Tang, CC, et al. Parkinson's disease tremorrelated metabolic network: characterization, progression, and treatment effects. Neuroimage. 2011;54(2):1244–53.
66. Duffau, H, Tzourio, N, Caparros-Lefebvre, D, Parker, F, Mazoyer, B. Tremor and voluntary repetitive movement in Parkinson's disease: comparison before and after L-dopa with positron emission tomography. Exp Brain Res. 1996;107(3):453–62.
67. Antonini, A, Moeller, JR, Nakamura, T, Spetsieris, P, Dhawan, V, Eidelberg, D. The metabolic anatomy of tremor in Parkinson's disease. Neurology. 1998;51(3):803–10.
68. Deiber, MP, Pollak, P, Passingham, R, et al. Thalamic stimulation and suppression of parkinsonian tremor. Evidence of a cerebellar deactivation using positron emission tomography. Brain. 1993; 116(Pt 1):267–79.
69. Fukuda, M, Barnes, A, Simon, ES, et al. Thalamic stimulation for parkinsonian tremor: correlation between regional cerebral blood flow and physiological tremor characteristics. Neuroimage. 2004 Feb;21(2):608–15.
70. Benninger, DH, Thees, S, Kollias, SS, Bassetti, CL, Waldvogel, D. Morphological differences in Parkinson's disease with and without rest tremor. J Neurol. 2009;256(2):256–63.
71. Timmermann, L, Gross, J, Dirks, M, Volkmann, J, Freund, HJ, Schnitzler, A. The cerebral oscillatory network of parkinsonian resting tremor. Brain. 2003;126(Pt 1):199212.
72. Caraceni, T, Scigliano, G, Musicco, M. The occurrence of motor fluctuations in parkinsonian patients treated long term with levodopa. Role of early treatment and disease progression. Neurology. 1991 Mar;41(3):380–4.
73. Mayeux, R, Stern, Y, Rosen, J, Frank Benson D. Is “subcortical dementia” a recognizable clinical entity? Ann Neurol. 1983;14 (3):278–83.
74. Fearnley, JM, Lees, AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain. 1991;114(Pt 5):2283–301.
75. Lee, CS, Samii, A, Sossi, V, et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease. Ann Neurol. 2000;47:493503.
76. Morrish, PK, Sawle, GV, Brooks, DJ. An [18F]dopa-PET and clinical study of the rate of progression in Parkinson's disease. Brain. 1996;119(Pt 2):585–91.
77. Zigmond, MJ, Abercrombie, ED, Berger, TW, Grace, AA, Stricker, EM. Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. Trends Neurosci. 1990;13(7):290–6.
78. Bezard, E, Crossman, AR, Gross, CE, Brotchie, JM. Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson's disease. FASEB J. 2001;15(6):1092–4.
79. Chuma, T, Faruque Reza, M, Ikoma, K, Mano, Y. Motor learning of hands with auditory cue in patients with Parkinson's disease. J Neural Transm. 2006;113(2):175–85.
80. Jahanshahi, M, Jenkins, I, Brown, R, Marsden, C, Passingham, R, Brooks, D. Self-initiated versus externally triggered movements: I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain. 1995;118(4):913.
81. Georgiou, N, Iansek, R, Bradshaw, JL, Phillips, JG, Mattingley, JB, Bradshaw, JA. An evaluation of the role of internal cues in the pathogenesis of parkinsonian hypokinesia. Brain. 1993;116(Pt 6):1575–87.
82. Lewis, GN, Byblow, WD, Walt, SE. Stride length regulation in Parkinson's disease: the use of extrinsic, visual cues. Brain. 2000;123(Pt 10):2077–90.
83. Oliveira, RM, Gurd, JM, Nixon, P, Marshall, JC, Passingham, RE. Micrographia in Parkinson's disease: the effect of providing external cues. J Neurol Neurosurg Psychiatry. 1997 oct;63(4): 429–33.
84. Glickstein, M, Stein, J. Paradoxical movement in Parkinson's disease. Trends Neurosci. 1991;14(11):480–2.
85. Suzuki, DA, Keller, EL. Visual signals in the dorsolateral pontine nucleus of the alert monkey: their relationship to smooth-pursuit eye movements. Exp Brain Res. 1984;53(2):473–8.
86. Ballanger, B, Baraduc, P, Broussolle, E, Le Bars, D, Desmurget, M, Thobois, S. Motor urgency is mediated by the contralateral cerebellum in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2008 oct;79(10):1110–16.
87. Lewis, M, Slagle, C, Smith, A, et al. Task specific influences of Parkinson's disease on the striato-thalamo-cortical and cerebello-thalamo-cortical motor circuitries. Neurosci. 2007;147 (1):224–35.
88. Sen, S, Kawaguchi, A, Truong, Y, Lewis, MM, Huang, X. Dynamic changes in cerebello-thalamo-cortical motor circuitry during progression of Parkinson's disease. Neurosci. 2010;166(2): 712–19.
89. Yu, H, Sternad, D, Corcos, DM, Vaillancourt, DE. Role of hyperactive cerebellum and motor cortex in Parkinson's disease. Neuroimage. 2007 Mar;35(1):222–33.
90. Palmer, S, Ng, B, Abugharbieh, R, Eigenraam, L, McKeown, MJ. Motor reserve and novel area recruitment: amplitude and spatial characteristics of compensation in Parkinson's disease. Eur J Neurosci. 2009;29:2187–96.
91. Stern, Y. Cognitive reserve. Neuropsychologia. 2009 Aug;47(10): 2015–28.
92. Friston, KJ. Commentary and opinion: II. Statistical parametric mapping: ontology and current issues. J Cereb Blood Flow Metab. 1995;15(3):361–70.
93. Palmer, SJ. Compensatory Mechanisms in Parkinson's Disease. PhD thesis: Vancouver: University of British Columbia; 2010.
94. Kwak, Y, Peltier, S, Bohnen, NI, Muller, ML, Dayalu, P, Seidler, RD. Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson's disease. Front Syst Neurosci. 2010 Sep 15;4:143.
95. Palmer, SJ, Li, J, Wang, ZJ, McKeown, MJ. Joint amplitude and connectivity compensatory mechanisms in Parkinson's disease. Neurosci. 2010;166(4):1110–18.
96. Stevenson, J, Oishi, MMK, Farajian, S, Cretu, E, Ty, E, McKeown, MJ. Response to sensory uncertainty in Parkinson's disease: a marker of cerebellar dysfunction? Eur J Neurosci. 2010;33(2):298305.
97. Baddeley, RJ, Ingram, HA, Miall, RC. System identification applied to a visuomotor task: near-optimal human performance in a noisy changing task. J Neurosci. 2003;23(7):3066.
98. Kording, KP, Wolpert, DM. Bayesian integration in sensorimotor learning. Nature. 2004;427(6971):244–7.
99. Vaziri, S, Diedrichsen, J, Shadmehr, R. Why does the brain predict sensory consequences of oculomotor commands? Optimal integration of the predicted and the actual sensory feedback. J Neurosci. 2006;26(16):4188–97.
100. Wei, K, Stevenson, IH, Kording, KP. The uncertainty associated with visual flow fields and their influence on postural sway: Weber's law suffices to explain the nonlinearity of vection. J Vis. 2010;10 (14):4.
101. Wolpert, DM, Ghahramani, Z. Computational principles of movement neuroscience. Nat Neurosci. 2000 Nov;3 Suppl: 1212–17.
102. van Beers, RJ, Baraduc, P, Wolpert, DM. Role of uncertainty in sensorimotor control. Philos T Roy Soc B. 2002;357(1424): 1137–45.

The Role of the Cerebellum in the Pathophysiology of Parkinson's Disease

  • Mechelle M. Lewis (a1) (a2), Shawna Galley (a3), Samantha Johnson (a3), James Stevenson (a3), Xuemei Huang (a1) (a2) (a4) (a5) (a6) (a7) and Martin J. McKeown (a3) (a8) (a9) (a10)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed