Skip to main content Accessibility help
×
Home

The Role of the Cerebellum in the Pathophysiology of Parkinson's Disease

Published online by Cambridge University Press:  23 September 2014

Mechelle M. Lewis
Affiliation:
Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA, USA Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA, USA
Shawna Galley
Affiliation:
Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
Samantha Johnson
Affiliation:
Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
James Stevenson
Affiliation:
Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
Xuemei Huang
Affiliation:
Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA, USA Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA, USA Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA, USA Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA, USA Department of Kinesiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA, USA Department of Bioengineering, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA, USA
Martin J. McKeown
Affiliation:
Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia, Canada Department of Medicine (Neurology), University of British Columbia, Vancouver, British Columbia, Canada Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

Parkinson's disease (PD), the most common neurodegenerative movement disorder, has traditionally been considered a “classic” basal ganglia disease, as the most obvious pathology is seen in the dopaminergic cells in the substantia nigra pars compacta. Nevertheless recent discoveries in anatomical connections linking the basal ganglia and the cerebellum have led to a re-examination of the role of the cerebellum in the pathophysiology of PD. This review summarizes the role of the cerebellum in explaining many curious features of PD: the significant variation in disease progression between individuals; why severity of dopaminergic deficit correlates with many features of PD such as bradykinesia, but not tremor; and why PD subjects with a tremor-predominant presentation tend to have a more benign prognosis. It is clear that the cerebellum participates in compensatory mechanisms associated with the disease and must be considered an essential contributor to the overall pathophysiology of PD.

Résumé:

Résumé:

La Maladie de Parkinson (MP), le trouble du mouvement de nature neurodégénérative le plus fréquent, a traditionnellement été considérée comme une maladie « classique » des noyaux gris centraux, étant donné que la pathologie la plus évidente se retrouve dans les cellules dopaminergiques de la substance noire de la pars compacta. Néanmoins, des découvertes récentes concernant les connections anatomiques liant les noyaux gris centraux et le cervelet ont mené à un nouvel examen du rôle du cervelet dans la physiopathologie de la MP. Cette revue explique de façon résumée plusieurs aspects singuliers de la MP dans lesquels le cervelet joue un rôle : la variation importante dans la progression de la maladie entre les patients ; pourquoi la sévérité du déficit dopaminergique est en corrélation avec plusieurs manifestations de la MP telle la bradykinésie, mais non avec le tremblement ; et pourquoi les patients chez qui le tremblement prédomine ont tendance à avoir un meilleur pronostic. il est certain que le cervelet participe à des mécanismes compensatoires associés à la maladie et sa contribution doit être considérée comme essentielle à la physiopathologie globale de la MP.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Jankovic, J, McDermott, M, Carter, J, et al. Variable expression of Parkinson's disease: a base-line analysis of the DATATOP cohort. The Parkinson Study Group. Neurology. 1990;40: 1529–34.CrossRefGoogle ScholarPubMed
2. Hoehn, MM, Yahr, MD. Parkinsonism - onset progression and mortality. Neurology. 1967;17(5):427–42.CrossRefGoogle ScholarPubMed
3. Guillard, A, Chastang, C. Long-term prognostic factors in Parkinson's disease. Rev Neurol. 1978;134(5):341–54.Google ScholarPubMed
4. Guillard, A, Chastang, C, Fenelon, G. Long-term study of 416 cases of Parkinson disease. Prognostic factors and therapeutic implications. Rev Neurol. 1986;142(3):207–14.Google ScholarPubMed
5. Goetz, CG, Tanner, CM, Stebbins, GT, Buchman, AS. Risk factors for progression in Parkinson's disease. Neurology. 1988;38(12): 1841–4.CrossRefGoogle ScholarPubMed
6. Jankovic, J, Kapadia, AS. Functional decline in Parkinson disease. Arch Neurol. 2001;58(10):1611–15.CrossRefGoogle ScholarPubMed
7. Marras, C, Rochon, P, Lang, AE. Predicting motor decline and disability in Parkinson disease: a systematic review. Arch Neurol. 2002;59(11):1724–8.CrossRefGoogle ScholarPubMed
8. Koller, WC, Hubble, JP. Levodopa therapy in Parkinson's disease. Neurology. 1990;40(Suppl 3):40–7.Google Scholar
9. Marjama-Lyons, J, Koller, W. Tremor-predominant Parkinson's disease. Approaches to treatment. Drugs Aging. 2000;16(4): 273–8.CrossRefGoogle Scholar
10. Vingerhoets, FJ, Schulzer, M, Calne, DB, Snow, BJ. Which clinical sign of Parkinson's disease best reflects the nigrostriatal lesion? Ann Neurol. 1997;41(1):5864.CrossRefGoogle Scholar
11. Afifi, AK, Bergman, RA. Functional Neuroanatomy: text and atlas. New York: McGraw-Hill; 1998.Google Scholar
12. Alexander, GE, DeLong, MR, Strick, PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9(1):357–81.CrossRefGoogle ScholarPubMed
13. Middleton, FA, Strick, PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev. 2000;31:236–50.CrossRefGoogle ScholarPubMed
14. Jueptner, M, Weiller, C. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain. 1998;121(Pt 8):1437–49.CrossRefGoogle ScholarPubMed
15. Bar-Gad, I, Bergman, H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol. 2001;11(6):689–95.CrossRefGoogle ScholarPubMed
16. Mushiake, H, Strick, PL. Pallidal neuron activity during sequential arm movements. J Neurophysiol. 1995;74(6):2754–8.Google ScholarPubMed
17. van Donkelaar, P, Stein, JF, Passingham, RE, Miall, RC. Neuronal activity in the primate motor thalamus during visually triggered and internally generated limb movements. J Cereb Blood Flow Metab. 1999;16:2333.Google Scholar
18. van Donkelaar, P, Stein, JF, Passingham, RE, Miall, RC. Temporary inactivation in the primate motor thalamus during visually triggered and internally generated limb movements. J Neurophysiol. 2000;83(5):2780–90.Google ScholarPubMed
19. Blakemore, SJ, Frith, CD, Wolpert, DM. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport. 2001;12(9):1879–84.CrossRefGoogle Scholar
20. Miall, RC, Jenkinson, EW. Functional imaging of changes in cerebellar activity related to learning during a novel eye-hand tracking task. Exp Brain Res. 2005;166(2):170–83.CrossRefGoogle Scholar
21. Jueptner, J, Jueptner, M, Jenkins, IH, Brooks, DJ, Frackowiak, RSJ, Passingham, RE. The sensory guidance of movement: a comparison of the cerebellum and basal ganglia. Exp Brain Res. 1996;112(3):462–74.CrossRefGoogle ScholarPubMed
22. Cerasa, A, Hagberg, GE, Peppe, A, et al. Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson's disease. Brain Res Bull. 2006 Dec;71(1-3):259–69.CrossRefGoogle ScholarPubMed
23. Gowen, E, Miall, R. Differentiation between external and internal cuing: An fMRI study comparing tracing with drawing. Neuroimage. 2007;36(2):396410.CrossRefGoogle ScholarPubMed
24. Purzner, J, Paradiso, GO, Cunic, D, et al. Involvement of the basal ganglia and cerebellar motor pathways in the preparation of self-initiated and externally triggered movements in humans. J Neurosci. 2007;27(22):6029.CrossRefGoogle Scholar
25. MacMillan, ML, Dostrovsky, JO, Lozano, AM, Hutchison, WD. Involvement of human thalamic neurons in internally and externally generated movements. Am Physiol Soc; 2004. p. 1085-90.Google Scholar
26. Vaillancourt, DE, Thulborn, KR, Corcos, DM. Neural basis for the processes that underlie visually guided and internally guided force control in humans. J Neurophsyiol. 2003;90(5):3330–40.CrossRefGoogle ScholarPubMed
27. Borghammer, P, Østergaard, K, Cumming, P, et al. A deformation-based morphometry study of patients with early-stage Parkinson's disease. Eur J Neurol. 2010;17(2):314–20.CrossRefGoogle ScholarPubMed
28. Linder, J, Birgander, R, Olsson, I, et al. Degenerative changes were common in brain magnetic resonance imaging in patients with newly diagnosed Parkinson's disease in a population-based cohort. J Neurol. 2009;256(10):1671–80.CrossRefGoogle Scholar
29. Messina, D, Cerasa, A, Condino, F, et al. Patterns of brain atrophy in Parkinson's disease, progressive supranuclear palsy and multiple system atrophy. Parkinsonism Relat Disord. 2011;17(3):172–6.CrossRefGoogle ScholarPubMed
30. Molnar, GF, Pilliar, A, Lozano, AM, Dostrovsky, JO. Differences in neuronal firing rates in pallidal and cerebellar receiving areas of thalamus in patients with Parkinson's disease, essential tremor, and pain. J Neurophysiol. 2005;93(6):3094–101.CrossRefGoogle ScholarPubMed
31. Narabayashi, H, Maeda, T, Yokochi, F. Long-term follow-up study of nucleus ventralis intermedius and ventrolateralis thalamotomy using a microelectrode technique in parkinsonism. App Neurophysiol. 1987;50(1-6):330–7.Google ScholarPubMed
32. Jellinger, KA. Pathology of Parkinson's disease. Mol Chem Neuropathol. 1991;14(3):153–97.CrossRefGoogle ScholarPubMed
33. Devi, L, Raghavendran, V, Prabhu, BM, Avadhani, NG, Anawdatheerthavarada, HK. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008 Apr 4;283(14):9089–100.CrossRefGoogle ScholarPubMed
34. Engelender, S, Kaminsky, Z, Guo, X, et al. Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet. 1999;22(1):110–14.Google ScholarPubMed
35. Nuber, S, Franck, T, Wolburg, H, et al. Transgenic overexpression of the alpha-synuclein interacting protein synphilin-1 leads to behavioral and neuropathological alterations in mice. Neurogenetics. 2010;11(1):107–20.CrossRefGoogle ScholarPubMed
36. Louis, ED, Yi, H, Erickson-Davis, C, Vonsattel, JPG, Faust, PL. Structural study of Purkinje cell axonal torpedoes in essential tremor. Neurosci Lett. 2009;450(3):287–91.CrossRefGoogle ScholarPubMed
37. Bostan, AC, Dum, RP, Strick, PL. The basal ganglia communicate with the cerebellum. P Natl Acad Sci USA. 2010;107(18): 8452–6.CrossRefGoogle ScholarPubMed
38. Hoshi, E, Tremblay, L, Feger, J, Carras, PL, Strick, PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8:1491–3.CrossRefGoogle ScholarPubMed
39. Lewis, MM, Du, G, Sen, S, et al. Differential involvement of striato-and cerebello-thalamo-cortical pathways in tremor-and akinetic/rigid-predominant Parkinson's disease. Neurosci. 2011 Mar 17;177:230–9.CrossRefGoogle Scholar
40. Bostan, AC, Strick, PL. The cerebellum and basal ganglia are interconnected. Neuropsychol Rev. 2010;20(3):261–70.CrossRefGoogle ScholarPubMed
41. Hurley, MJ, Mash, DC, Jenner, P. Markers for dopaminergic neurotransmission in the cerebellum in normal individuals and patients with Parkinson's disease examined by RT-PCR. Eur J Neurosci.18(9):2668–72.CrossRefGoogle ScholarPubMed
42. Courtemanche, R, Pellerin, J-P, Lamarre, Y. Local field potential oscillations in primate cerebellar cortex: modulation during active and passive expectancy. J Neurophysiol. 2002;88(2): 771–82.Google ScholarPubMed
43. Courtemanche, R, Lamarre, Y. Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol. 2005;93 (4):2039–52.CrossRefGoogle Scholar
44. Courtemanche, R, Fujii, N, Graybiel, AM. Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J Neurosci. 2003 Dec 17;23(37):1174152.Google ScholarPubMed
45. Brown, P, Oliviero, A, Mazzone, P, Insola, A, Tonali, P, Di Lazzaro, V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease. J Neurosci. 2001; 21(3):1033.Google ScholarPubMed
46. Raz, A, Frechter-Mazar, V, Feingold, A, Abeles, M, Vaadia, E, Bergman, H. Activity of pallidal and striatal tonically active neurons is correlated in MPTP-treated monkeys but not in normal monkeys. J Neurosci. 2001;21(3):RC128.Google ScholarPubMed
47. Williams, D, Tijssen, M, Van Bruggen, G, et al. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain. 2002 Jul;125(Pt 7):1558–69.CrossRefGoogle ScholarPubMed
48. Schnitzler, A, Gross, J. Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci. 2005;6:113.CrossRefGoogle Scholar
49. Poirier, LJ, Pechadre, JC, Larochelle, L, Dankova, J, Boucher, R. Stereotaxic lesions and movement disorders in monkeys. Adv Neurol. 1975;10:522.Google ScholarPubMed
50. Burns, RS, Chiueh, CC, Markey, SP, Ebert, MH, Jacobowitz, DM, Kopin, IJ. A primate model of Parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. P Natl Acad Sci USA. 1983;80(14):4546–50.CrossRefGoogle ScholarPubMed
51. Ni, Z, Pinto, AD, Lang, AE, Chen, R. Involvement of the cerebellothalamocortical pathway in Parkinson disease. Ann Neurol. 2010;68(6):816–24.CrossRefGoogle ScholarPubMed
52. Cohen, O, Pullman, S, Jurewicz, E, Watner, D, Louis, ED. Rest tremor in patients with essential tremor: prevalence, clinical correlates, and electrophysiologic characteristics. Arch Neurol. 2003;60 (3):405.CrossRefGoogle ScholarPubMed
53. Minen, MT, Louis, ED. Emergence of Parkinson's disease in essential tremor: a study of the clinical correlates in 53 patients. Mov Dis. 2008;23(11):1602–5.CrossRefGoogle ScholarPubMed
54. Pechadre, JC, Larochelle, L, Poirier, LJ. Parkinsonian akinesia, rigidity and tremor in the monkey. Histopathological and neuropharmacological study. J Neurol Sci. 1976;28(2):147–57.CrossRefGoogle ScholarPubMed
55. Marsden, CD, Obeso, JA. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain. 1994;117:877–97.CrossRefGoogle ScholarPubMed
56. Hua, S, Reich, SG, Zirh, AT, Perry, V, Dougherty, PM, Lenz, FA. The role of the thalamus and basal ganglia in parkinsonian tremor. Mov Dis. 1998;13 Suppl 3:40–2.CrossRefGoogle Scholar
57. Lenz, FA, Kwan, HC, Martin, RL, Tasker, RR, Dostrovsky, JO, Lenz, YE. Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain. 1994;117(Pt 3):531–43.CrossRefGoogle ScholarPubMed
58. Inase, M, Tanji, J. Thalamic distribution of projection neurons to the primary motor cortex relative to afferent terminal fields from the globus pallidus in the macaque monkey. J Comp Neurol. 1995; 353(3):415–26.CrossRefGoogle ScholarPubMed
59. Benabid, AL, Pollak, P, Gervason, C, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337(8738):403–6.CrossRefGoogle ScholarPubMed
60. Caparros-Lefebvre, D, Blond, S, Vermersch, P, Pecheux, N, Guieu, JD, Petit, H. Chronic thalamic stimulation improves tremor and levodopa induced dyskinesias in Parkinson's disease. J Neurol Neurosurg Psychiatry. 1993;56(3):268–73.CrossRefGoogle ScholarPubMed
61. Koller, W, Pahwa, R, Busenbark, K, et al. High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol. 1997;42(3):292–9.CrossRefGoogle ScholarPubMed
62. Limousin-Dowsey, P, Pollak, P, Van Blercom, N, Krack, P, Benazzouz, A, Benabid, A. Thalamic, subthalamic nucleus and internal pallidum stimulation in Parkinson's disease. J Neurol. 1999;246 Suppl 2:II425.CrossRefGoogle ScholarPubMed
63. Lenz, FA, Normand, SL, Kwan, HC, et al. Statistical prediction of the optimal site for thalamotomy in parkinsonian tremor. Mov Dis. 1995;10(3):318–28.CrossRefGoogle Scholar
64. Jankovic, J, Cardoso, F, Grossman, RG, Hamilton, WJ. Outcome after stereotactic thalamotomy for parkinsonian, essential, and other types of tremor. Neurosurgery. 1995;37(4):680–7.CrossRefGoogle ScholarPubMed
65. Mure, H, Hirano, S, Tang, CC, et al. Parkinson's disease tremorrelated metabolic network: characterization, progression, and treatment effects. Neuroimage. 2011;54(2):1244–53.CrossRefGoogle ScholarPubMed
66. Duffau, H, Tzourio, N, Caparros-Lefebvre, D, Parker, F, Mazoyer, B. Tremor and voluntary repetitive movement in Parkinson's disease: comparison before and after L-dopa with positron emission tomography. Exp Brain Res. 1996;107(3):453–62.CrossRefGoogle Scholar
67. Antonini, A, Moeller, JR, Nakamura, T, Spetsieris, P, Dhawan, V, Eidelberg, D. The metabolic anatomy of tremor in Parkinson's disease. Neurology. 1998;51(3):803–10.CrossRefGoogle ScholarPubMed
68. Deiber, MP, Pollak, P, Passingham, R, et al. Thalamic stimulation and suppression of parkinsonian tremor. Evidence of a cerebellar deactivation using positron emission tomography. Brain. 1993; 116(Pt 1):267–79.CrossRefGoogle ScholarPubMed
69. Fukuda, M, Barnes, A, Simon, ES, et al. Thalamic stimulation for parkinsonian tremor: correlation between regional cerebral blood flow and physiological tremor characteristics. Neuroimage. 2004 Feb;21(2):608–15.CrossRefGoogle ScholarPubMed
70. Benninger, DH, Thees, S, Kollias, SS, Bassetti, CL, Waldvogel, D. Morphological differences in Parkinson's disease with and without rest tremor. J Neurol. 2009;256(2):256–63.CrossRefGoogle ScholarPubMed
71. Timmermann, L, Gross, J, Dirks, M, Volkmann, J, Freund, HJ, Schnitzler, A. The cerebral oscillatory network of parkinsonian resting tremor. Brain. 2003;126(Pt 1):199212.CrossRefGoogle ScholarPubMed
72. Caraceni, T, Scigliano, G, Musicco, M. The occurrence of motor fluctuations in parkinsonian patients treated long term with levodopa. Role of early treatment and disease progression. Neurology. 1991 Mar;41(3):380–4.CrossRefGoogle ScholarPubMed
73. Mayeux, R, Stern, Y, Rosen, J, Frank Benson D. Is “subcortical dementia” a recognizable clinical entity? Ann Neurol. 1983;14 (3):278–83.CrossRefGoogle Scholar
74. Fearnley, JM, Lees, AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain. 1991;114(Pt 5):2283–301.CrossRefGoogle ScholarPubMed
75. Lee, CS, Samii, A, Sossi, V, et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease. Ann Neurol. 2000;47:493503.3.0.CO;2-4>CrossRefGoogle Scholar
76. Morrish, PK, Sawle, GV, Brooks, DJ. An [18F]dopa-PET and clinical study of the rate of progression in Parkinson's disease. Brain. 1996;119(Pt 2):585–91.CrossRefGoogle ScholarPubMed
77. Zigmond, MJ, Abercrombie, ED, Berger, TW, Grace, AA, Stricker, EM. Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. Trends Neurosci. 1990;13(7):290–6.CrossRefGoogle Scholar
78. Bezard, E, Crossman, AR, Gross, CE, Brotchie, JM. Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson's disease. FASEB J. 2001;15(6):1092–4.Google ScholarPubMed
79. Chuma, T, Faruque Reza, M, Ikoma, K, Mano, Y. Motor learning of hands with auditory cue in patients with Parkinson's disease. J Neural Transm. 2006;113(2):175–85.CrossRefGoogle ScholarPubMed
80. Jahanshahi, M, Jenkins, I, Brown, R, Marsden, C, Passingham, R, Brooks, D. Self-initiated versus externally triggered movements: I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain. 1995;118(4):913.CrossRefGoogle ScholarPubMed
81. Georgiou, N, Iansek, R, Bradshaw, JL, Phillips, JG, Mattingley, JB, Bradshaw, JA. An evaluation of the role of internal cues in the pathogenesis of parkinsonian hypokinesia. Brain. 1993;116(Pt 6):1575–87.CrossRefGoogle ScholarPubMed
82. Lewis, GN, Byblow, WD, Walt, SE. Stride length regulation in Parkinson's disease: the use of extrinsic, visual cues. Brain. 2000;123(Pt 10):2077–90.CrossRefGoogle Scholar
83. Oliveira, RM, Gurd, JM, Nixon, P, Marshall, JC, Passingham, RE. Micrographia in Parkinson's disease: the effect of providing external cues. J Neurol Neurosurg Psychiatry. 1997 oct;63(4): 429–33.CrossRefGoogle ScholarPubMed
84. Glickstein, M, Stein, J. Paradoxical movement in Parkinson's disease. Trends Neurosci. 1991;14(11):480–2.CrossRefGoogle Scholar
85. Suzuki, DA, Keller, EL. Visual signals in the dorsolateral pontine nucleus of the alert monkey: their relationship to smooth-pursuit eye movements. Exp Brain Res. 1984;53(2):473–8.CrossRefGoogle ScholarPubMed
86. Ballanger, B, Baraduc, P, Broussolle, E, Le Bars, D, Desmurget, M, Thobois, S. Motor urgency is mediated by the contralateral cerebellum in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2008 oct;79(10):1110–16.CrossRefGoogle ScholarPubMed
87. Lewis, M, Slagle, C, Smith, A, et al. Task specific influences of Parkinson's disease on the striato-thalamo-cortical and cerebello-thalamo-cortical motor circuitries. Neurosci. 2007;147 (1):224–35.CrossRefGoogle ScholarPubMed
88. Sen, S, Kawaguchi, A, Truong, Y, Lewis, MM, Huang, X. Dynamic changes in cerebello-thalamo-cortical motor circuitry during progression of Parkinson's disease. Neurosci. 2010;166(2): 712–19.CrossRefGoogle ScholarPubMed
89. Yu, H, Sternad, D, Corcos, DM, Vaillancourt, DE. Role of hyperactive cerebellum and motor cortex in Parkinson's disease. Neuroimage. 2007 Mar;35(1):222–33.CrossRefGoogle Scholar
90. Palmer, S, Ng, B, Abugharbieh, R, Eigenraam, L, McKeown, MJ. Motor reserve and novel area recruitment: amplitude and spatial characteristics of compensation in Parkinson's disease. Eur J Neurosci. 2009;29:2187–96.CrossRefGoogle ScholarPubMed
91. Stern, Y. Cognitive reserve. Neuropsychologia. 2009 Aug;47(10): 2015–28.CrossRefGoogle Scholar
92. Friston, KJ. Commentary and opinion: II. Statistical parametric mapping: ontology and current issues. J Cereb Blood Flow Metab. 1995;15(3):361–70.CrossRefGoogle ScholarPubMed
93. Palmer, SJ. Compensatory Mechanisms in Parkinson's Disease. PhD thesis: Vancouver: University of British Columbia; 2010.Google ScholarPubMed
94. Kwak, Y, Peltier, S, Bohnen, NI, Muller, ML, Dayalu, P, Seidler, RD. Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson's disease. Front Syst Neurosci. 2010 Sep 15;4:143.CrossRefGoogle Scholar
95. Palmer, SJ, Li, J, Wang, ZJ, McKeown, MJ. Joint amplitude and connectivity compensatory mechanisms in Parkinson's disease. Neurosci. 2010;166(4):1110–18.CrossRefGoogle ScholarPubMed
96. Stevenson, J, Oishi, MMK, Farajian, S, Cretu, E, Ty, E, McKeown, MJ. Response to sensory uncertainty in Parkinson's disease: a marker of cerebellar dysfunction? Eur J Neurosci. 2010;33(2):298305.CrossRefGoogle ScholarPubMed
97. Baddeley, RJ, Ingram, HA, Miall, RC. System identification applied to a visuomotor task: near-optimal human performance in a noisy changing task. J Neurosci. 2003;23(7):3066.Google Scholar
98. Kording, KP, Wolpert, DM. Bayesian integration in sensorimotor learning. Nature. 2004;427(6971):244–7.CrossRefGoogle Scholar
99. Vaziri, S, Diedrichsen, J, Shadmehr, R. Why does the brain predict sensory consequences of oculomotor commands? Optimal integration of the predicted and the actual sensory feedback. J Neurosci. 2006;26(16):4188–97.CrossRefGoogle Scholar
100. Wei, K, Stevenson, IH, Kording, KP. The uncertainty associated with visual flow fields and their influence on postural sway: Weber's law suffices to explain the nonlinearity of vection. J Vis. 2010;10 (14):4.CrossRefGoogle ScholarPubMed
101. Wolpert, DM, Ghahramani, Z. Computational principles of movement neuroscience. Nat Neurosci. 2000 Nov;3 Suppl: 1212–17.CrossRefGoogle ScholarPubMed
102. van Beers, RJ, Baraduc, P, Wolpert, DM. Role of uncertainty in sensorimotor control. Philos T Roy Soc B. 2002;357(1424): 1137–45.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 381 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-76cb886bbf-frjnl Total loading time: 0.641 Render date: 2021-01-22T23:06:23.582Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Role of the Cerebellum in the Pathophysiology of Parkinson's Disease
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Role of the Cerebellum in the Pathophysiology of Parkinson's Disease
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Role of the Cerebellum in the Pathophysiology of Parkinson's Disease
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *