Skip to main content Accessibility help
×
Home

Radiosurgical Retreatment for Brain Arteriovenous Malformation

  • Javad Mirza-Aghazadeh (a1), Yuri M. Andrade-Souza (a1), Gelareh Zadeh (a1), Daryl Scora (a1), May N. Tsao (a1) and Michael L. Schwartz (a1)...

Abstract:

Objective:

To analyze our experience with a second radiosurgical treatment for brain arteriovenous malformations (BAVMs) after an unsuccessful first radiosurgical treatment.

Methods:

Between 1993 and 2000, 242 patients were treated by the Toronto Sunnybrook Regional Cancer Center using a LINAC system. Fifteen of these patients required a second radiosurgical intervention due to the failure of the first procedure. Data was collected on baseline patient characteristics, BAVM features, radiosurgery treatment plan and outcomes. Brain arteriovenous malformation obliteration was determined by follow-up MRI and angiography and the obliteration prediction index (OPI) calculated according to a previously established formula.

Results:

The median interval between the first and second treatment was 46 months (range 39-109). The median follow-up after the second procedure was 39 months (range 26 to 72). The mean BAVM volume before the first treatment was 8.9cm3 (range 0.3-21) and before the second treatment was 3.6cm3 (range 0.2-11.6). The mean marginal dose during the first treatment was 18Gy (range 12-25) and during the second treatment was 16Gy (range 12-20). After the second treatment, nine patients had obliteration of their BAVM confirmed by angiography and one patient had obliteration confirmed by MRI, resulting in an obliteration rate of 66.6%, which is very comparable to that predicted by the OPI (65%). After the second treatment two patients had a radiation-induced complication (13.3%).

Conclusion:

Retreatment of BAVM using a second radiosurgery procedure is a safe and effective option that offers the same rate of success as the initial radiosurgery and an acceptable risk of radiation-induced complication.

RÉSUMÉ: Objectif:

Analyser notre expérience de l’administration d’un second traitement radiochirurgical chez des patients atteints de malformations artérioveineuses cérébrales (MAVC) quand un premier traitement radiochirurgical a échoué.

Méthodes:

242 patients ont été traités au Sunnybrook Regional Cancer Center de Toronto au moyen du système LINAC entre 1993 et 2000. On a dû avoir recours à une seconde intervention radiochirurgicale chez quinze de ces patients, vu l’échec de la première intervention. Nous avons recueilli les données initiales sur les caractéristiques des patients, les modalités du plan de traitement radiochirurgical et les résultats. L’oblitération des MAVC était évaluée par IRM et angiographie après le traitement et l’indice de prédiction d’oblitération (IPO) était calculé selon une formule pré-établie.

Résultats:

L’intervalle médian entre le premier et le second traitement était de 46 mois (écart de 39 à 109 mois). La durée médiane du suivi après la deuxième intervention était de 39 mois (écart de 26 à 72 mois). Le volume moyen de la MAVC avant le premier traitement était de 8,9 cm3 (écart de 0,3 à 21 cm3) et avant le second traitement de 3,6 cm3 (écart de 0,2 à 11, 6cm3). La dose marginale moyenne pendant le premier traitement était de 18 Gy (écart de 12 à 25 Gy) et de 16 Gy (écart de 12 à 20 Gy) pendant le second. Neuf patients avaient une oblitération de leur MAVC confirmée par angiographie après le second traitement et un patient avait une oblitération confirmée par IRM, soit un taux d’oblitération de 66,6%. Ce taux est comparable à celui prédit par l’IPO qui était de 65%. Après le second traitement, deux patients ont présenté une complication due à l’irradiation (13%).

Conclusion:

Le recours à un second traitement radiochirurgical dans les MAVC est une option sûre et efficace qui présente le même taux de succès que le traitement radiochirurgical initial ainsi qu’un risque acceptable de complications induites par l’irradiation.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Radiosurgical Retreatment for Brain Arteriovenous Malformation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Radiosurgical Retreatment for Brain Arteriovenous Malformation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Radiosurgical Retreatment for Brain Arteriovenous Malformation
      Available formats
      ×

Copyright

Corresponding author

Division of Neurosurgery, Suite A129, Sunnybrook Health Science Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada.

References

Hide All
1. Friedman, WA, Blatt, DL, Bova, FJ, et al. The risk of hemorrhage after radiosurgery for arteriovenous malformations. J Neurosurg. 1996;84(6):9129.
2. Reporting terminology for brain arteriovenous malformation clinical and radiographic features for use in clinical trials. Stroke. 2001;32(6):143042.
3. Berman, MF, Sciacca, RR, Pile-Spellman, J, et al. The epidemiology of brain arteriovenous malformations. Neurosurgery. 2000;47(2):38996; discussion 397.
4. Aoki, Y, Nakagawa, K, Tago, M, et al. Clinical evaluation of gamma knife radiosurgery for intracranial arteriovenous malformation. Radiat Med. 1996;14(5):2658.
5. Friedman, WA, Bova, FJ, Bollampally, S, et al. Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery. 2003;52(2):296307; discussion 307-298.
6. Gallina, P, Merienne, L, Meder, JF, et al. Failure in radiosurgery treatment of cerebral arteriovenous malformations. Neurosurgery. 1998;42(5):9961002; discussion 1002-1004.
7. Pollock, BE, Gorman, DA, Coffey, RJ. Patient outcomes after arteriovenous malformation radiosurgical management: results based on a 5- to 14-year follow-up study. Neurosurgery. 2003;52(6):12916; discussion 1296-7.
8. Karlsson, B, Lindquist, C, Steiner, L. Prediction of obliteration after gamma knife surgery for cerebral arteriovenous malformations. Neurosurgery. 1997;40(3):42530; discussion 430-421.
9. Young, C, Summerfield, R, Schwartz, M, et al. Radiosurgery for arteriovenous malformations: the University of Toronto experience. Can J Neurol Sci. 1997;24(2):99105.
10. Yamamoto, M, Jimbo, M, Hara, M, et al. Gamma knife radiosurgery for arteriovenous malformations: long-term follow-up results focusing on complications occurring more than 5 years after irradiation. Neurosurgery. 1996;38(5):90614.
11. Coffey, RJ, Nichols, DA, Shaw, EG. Stereotactic radiosurgical treatment of cerebral arteriovenous malformations. Gamma Unit Radiosurgery Study Group. Mayo Clin Proc. 1995;70(3):21422.
12. Colombo, F, Pozza, F, Chierego, G, et al. Linear accelerator radiosurgery of cerebral arteriovenous malformations: current status. Acta Neurochir Suppl (Wien). 1994;62:59.
13. Betti, OO, Munari, C, Rosler, R. Stereotactic radiosurgery with the linear accelerator: treatment of arteriovenous malformations. Neurosurgery. 1989;24(3):31121.
14. Yamamoto, M, Hara, M, Ide, M, et al. Radiation-related adverse effects observed on neuro-imaging several years after radiosurgery for cerebral arteriovenous malformations. Surg Neurol. 1998;49(4):38597; discussion 397-388.
15. Flickinger, JC, Kondziolka, D, Lunsford, LD, et al. A multi-institutional analysis of complication outcomes after arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys. 1999;44(1):6774.
16. Ellis, TL, Friedman, WA, Bova, FJ, et al. Analysis of treatment failure after radiosurgery for arteriovenous malformations. J Neurosurg. 1998;89(1):10410.
17. Friedman, WA, Bova, FJ, Mendenhall, WM. Linear accelerator radiosurgery for arteriovenous malformations: the relationship of size to outcome. J Neurosurg. 1995;82(2):1809.
18. Kwon, Y, Jeon, SR, Kim, JH, et al. Analysis of the causes of treatment failure in gamma knife radiosurgery for intracranial arteriovenous malformations. J Neurosurg. 2000;93 Suppl 3: S1046.
19. Pollock, BE, Kondziolka, D, Lunsford, LD, et al. Repeat stereotactic radiosurgery of arteriovenous malformations: factors associated with incomplete obliteration. Neurosurgery. 1996;38(2):31824.
20. Flickinger, JC, Kondziolka, D, Lunsford, LD, et al. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous Malformation Radiosurgery Study Group. Int J Radiat Oncol Biol Phys. 2000;46(5):11438.
21. Flickinger, JC, Kondziolka, D, Maitz, AH, et al. An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol. 2002;63(3):34754.
22. Flickinger, JC, Kondziolka, D, Pollock, BE, et al. Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling. Int J Radiat Oncol Biol Phys. 1997;38(3): 48590.
23. Flickinger, JC, Pollock, BE, Kondziolka, D, et al. A dose-response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys. 1996;36(4):873879.
24. Chang, JH, Chang, JW, Park, YG, et al. Factors related to complete occlusion of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg. 2000;93 Suppl 3:S96101.
25. Karlsson, B, Lax, I, Soderman, M. Factors influencing the risk for complications following Gamma Knife radiosurgery of cerebral arteriovenous malformations. Radiother Oncol. 1997;43(3): 27580.
26. Karlsson, B, Lax, I, Soderman, M. Can the probability for obliteration after radiosurgery for arteriovenous malformations be accurately predicted? Int J Radiat Oncol Biol Phys. 1999;43(2):3139.
27. Mavroidis, P, Theodorou, K, Lefkopoulos, D, et al. Prediction of AVM obliteration after stereotactic radiotherapy using radiobiological modelling. Phys Med Biol. 2002;47(14):247194.
28. Pollock, BE, Flickinger, JC, Lunsford, LD, et al. Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery. 1998;42(6):123944; discussion 1244-1237.
29. Podgorsak, EB, Olivier, A, Pla, M, et al. Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1988;14(1):11526.
30. Souhami, L, Olivier, A, Podgorsak, EB, et al. Radiosurgery of cerebral arteriovenous malformations with the dynamic stereotactic irradiation. Int J Radiat Oncol Biol Phys. 1990;19(3):77582.
31. O’Brien, PF, Gillies, BA, Schwartz, M, et al. Radiosurgery with unflattened 6-MV photon beams. Med Phys. 1991;18(3):51921.
32. Gillies, BA, O’Brien, PF, McVittie, R, et al. Engineering modifications for dynamic stereotactically assisted radiotherapy. Med Phys. 1993;20(5):14915.
33. Olivier, A, Bertrand, G. Stereotaxic device for percutaneous twist-drill insertion of depth electrodes and for brain biopsy. Technical note. J Neurosurg. 1982;56(2):3078.
34. Schwartz, M, Sixel, K, Young, C, et al. Prediction of obliteration of arteriovenous malformations after radiosurgery: the obliteration prediction index. Can J Neurol Sci. 1997;24(2):1069.
35. Andrade-Souza, YM, Zadeh, G, Ramani, R, et al. Testing the radiosurgery-based arteriovenous malformation score and the modified Spetzler-Martin grading system to predict radiosurgical outcome. J. Neurosurg. 2005;103:6428.
36. Karlsson, B, Kihlstrom, L, Lindquist, C, et al. Gamma knife surgery for previously irradiated arteriovenous malformations. Neurosurgery. 1998;42(1):15; discussion 5-6.
37. Maesawa, S, Flickinger, JC, Kondziolka, D, et al. Repeated radiosurgery for incompletely obliterated arteriovenous malformations. J Neurosurg. 2000;92(6):96170.
38. Foote, KD, Friedman, WA, Ellis, TL, et al. Salvage retreatment after failure of radiosurgery in patients with arteriovenous malformations. J Neurosurg. 2003;98(2):33741.
39. Schlienger, M, Nataf, F, Lefkopoulos, D, et al. Repeat linear accelerator radiosurgery for cerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys. 2003;56(2): 52936.
40. Lax, I, Karlsson, B. Prediction of complications in gamma knife radiosurgery of arteriovenous malformation. Acta Oncol. 1996;35(1):4955.
41. Kondziolka, D, McLaughlin, MR, Kestle, JR. Simple risk predictions for arteriovenous malformation hemorrhage. Neurosurgery. 1995;37(5):8515.
42. Brown, RD Jr. Simple risk predictions for arteriovenous malformation hemorrhage. Neurosurgery. 2000;46(4):1024.
43. Al-Shahi, R, Warlow, C. A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain. 2001;124(Pt 10):190026.
44. Mast, H, Young, WL, Koennecke, HC, et al. Risk of spontaneous haemorrhage after diagnosis of cerebral arteriovenous malformation. Lancet. 1997;350(9084):10658.
45. Kjellberg, RN, Hanamura, T, Davis, KR, et al. Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N Engl J Med. 1983;309(5):26974.
46. Steinberg, GK, Fabrikant, JI, Marks, MP, et al. Stereotactic heavy-charged-particle arteriovenous malformations. N Engl J Med. 1990;323(2): 96101.
47. Colombo, F, Pozza, F, Chierego, G, et al. Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery. 1994;34(1):1420; discussion 20-11.
48. Karlsson, B, Lindquist, C, Steiner, L. Effect of Gamma Knife surgery on the risk of rupture prior to AVM obliteration. Minim Invasive Neurosurg. 1996;39(1):217.
49. Yamamoto, Y, Coffey, RJ, Nichols, DA, et al. Interim report on the radiosurgical treatment of cerebral arteriovenous malformations. The influence of size, dose, time, and technical factors on obliteration rate. J Neurosurg. 1995;83(5):8327.
50. Steinberg, GK, Chang, SD, Levy, RP, et al. Surgical resection of large incompletely treated intracranial arteriovenous malformations following stereotactic radiosurgery. J Neurosurg. 1996; 84(6):9208.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed