Skip to main content Accessibility help
×
×
Home

Information:

  • Access
  • Open access
  • Cited by 22
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Nemeth, Viola Luca Must, Anita Horvath, Szatmar Király, Andras Kincses, Zsigmond Tamas and Vécsei, László 2016. Gender-Specific Degeneration of Dementia-Related Subcortical Structures Throughout the Lifespan. Journal of Alzheimer's Disease, Vol. 55, Issue. 3, p. 865.

    Tomioka, Kimiko Kurumatani, Norio and Hosoi, Hiroshi 2017. Age and gender differences in the association between social participation and instrumental activities of daily living among community-dwelling elderly. BMC Geriatrics, Vol. 17, Issue. 1,

    Petersen, Jindong Ding Waldorff, Frans Boch Siersma, Volkert Dirk Phung, Thien Kieu Thi Bebe, Anna Carina Klara Magdalena and Waldemar, Gunhild 2017. Major Depressive Symptoms Increase 3-Year Mortality Rate in Patients with Mild Dementia. International Journal of Alzheimer's Disease, Vol. 2017, Issue. , p. 1.

    Lipnicki, Darren M. Crawford, John Kochan, Nicole A. Trollor, Julian N. Draper, Brian Reppermund, Simone Maston, Kate Mather, Karen A. Brodaty, Henry Sachdev, Perminder S. Bowman, Allison Burns, Kim Broe, Anthony Dekker, Joula Dooley, Louise de Permentier, Michele Fairjones, Sarah Fletcher, Janelle French, Therese Foster, Cathy Nugent-Cleary-Fox, Emma Gooi, Chien Harvey, Evelyn Helyer, Rebecca Hsieh, Sharpley Hughes, Laura Jacek, Sarah Johnston, Mary Kang, Kristan McCade, Donna Meeth, Samantha Milne, Eveline Moir, Angharad O'Grady, Ros Pfaeffli, Kia Pose, Carine Reuser, Laura Rose, Amanda Schofield, Peter Shahnawaz, Zeeshan Sharpley, Amanda Slavin, Melissa Thompson, Claire Queisser, Wiebke and Wong, Sam 2017. Risk Factors for Mild Cognitive Impairment, Dementia and Mortality: The Sydney Memory and Ageing Study. Journal of the American Medical Directors Association, Vol. 18, Issue. 5, p. 388.

    Stubbs, Brendon Chen, Li-Jung Chang, Chun-Yi Sun, Wen-Jung and Ku, Po-Wen 2017. Accelerometer-assessed light physical activity is protective of future cognitive ability: A longitudinal study among community dwelling older adults. Experimental Gerontology, Vol. 91, Issue. , p. 104.

    Ku, Po-Wen Liu, Yi-Te Lo, Ming-Kuei Chen, Li-Jung and Stubbs, Brendon 2017. Higher levels of objectively measured sedentary behavior is associated with worse cognitive ability: Two-year follow-up study in community-dwelling older adults. Experimental Gerontology, Vol. 99, Issue. , p. 110.

    Almeida, O P Hankey, G J Yeap, B B Golledge, J and Flicker, L 2017. Depression as a modifiable factor to decrease the risk of dementia. Translational Psychiatry, Vol. 7, Issue. 5, p. e1117.

    Feigin, Valery L Abajobir, Amanuel Alemu Abate, Kalkidan Hassen Abd-Allah, Foad Abdulle, Abdishakur M Abera, Semaw Ferede Abyu, Gebre Yitayih Ahmed, Muktar Beshir Aichour, Amani Nidhal Aichour, Ibtihel Aichour, Miloud Taki Eddine Akinyemi, Rufus Olusola Alabed, Samer Al-Raddadi, Rajaa Alvis-Guzman, Nelson Amare, Azmeraw T. Ansari, Hossein Anwari, Palwasha Ärnlöv, Johan Asayesh, Hamid Asgedom, Solomon Weldegebreal Atey, Tesfay Mehari Avila-Burgos, Leticia Frinel, Euripide Avokpaho, G. Arthur Azarpazhooh, Mahmood Reza Barac, Aleksandra Barboza, Miguel Barker-Collo, Suzanne L Bärnighausen, Till Bedi, Neeraj Beghi, Ettore Bennett, Derrick A Bensenor, Isabela M Berhane, Adugnaw Betsu, Balem Demtsu Bhaumik, Soumyadeep Birlik, Sait Mentes Biryukov, Stan Boneya, Dube Jara Bulto, Lemma Negesa Bulto Carabin, Hélène Casey, Daniel Castañeda-Orjuela, Carlos A. Catalá-López, Ferrán Chen, Honglei Chitheer, Abdulaal A Chowdhury, Rajiv Christensen, Hanne Dandona, Lalit Dandona, Rakhi de Veber, Gabrielle A Dharmaratne, Samath D Do, Huyen Phuc Dokova, Klara Dorsey, E Ray Ellenbogen, Richard G Eskandarieh, Sharareh Farvid, Maryam S Fereshtehnejad, Seyed-Mohammad Fischer, Florian Foreman, Kyle J Geleijnse, Johanna M Gillum, Richard F Giussani, Giorgia Goldberg, Ellen M Gona, Philimon N Goulart, Alessandra Carvalho Gugnani, Harish Chander Gupta, Rahul Hachinski, Vladimir Gupta, Rajeev Hamadeh, Randah Ribhi Hambisa, Mitiku Hankey, Graeme J Hareri, Habtamu Abera Havmoeller, Rasmus Hay, Simon I Heydarpour, Pouria Hotez, Peter J Jakovljevic, Mihajlo (Michael) B Javanbakht, Mehdi Jeemon, Panniyammakal Jonas, Jost B Kalkonde, Yogeshwar Kandel, Amit Karch, André Kasaeian, Amir Kastor, Anshul Keiyoro, Peter Njenga Khader, Yousef Saleh Khalil, Ibrahim A Khan, Ejaz Ahmad Khang, Young-Ho Tawfih, Abdullah Khoja, Abdullah Khubchandani, Jagdish Kulkarni, Chanda Kim, Daniel Kim, Yun Jin Kivimaki, Mika Kokubo, Yoshihiro Kosen, Soewarta Kravchenko, Michael Krishnamurthi, Rita Vanmala Defo, Barthelemy Kuate Kumar, G Anil Kumar, Rashmi Kyu, Hmwe H Larsson, Anders Lavados, Pablo M Li, Yongmei Liang, Xiaofeng Liben, Misgan Legesse Lo, Warren D Logroscino, Giancarlo Lotufo, Paulo A Loy, Clement T Mackay, Mark T El Razek, Hassan Magdy Abd El Razek, Mohammed Magdy Abd Majeed, Azeem Malekzadeh, Reza Manhertz, Treh Mantovani, Lorenzo G Massano, João Mazidi, Mohsen McAlinden, Colm Mehata, Suresh Mehndiratta, Man Mohan Memish, Ziad A Mendoza, Walter Mengistie, Mubarek Abera Mensah, George A Meretoja, Atte Mezgebe, Haftay Berhane Miller, Ted R Mishra, Shiva Raj Ibrahim, Norlinah Mohamed Mohammadi, Alireza Mohammed, Kedir Endris Mohammed, Shafiu Mokdad, Ali H Moradi-Lakeh, Maziar Velasquez, Ilais Moreno Musa, Kamarul Imran Naghavi, Mohsen Ngunjiri, Josephine Wanjiku Nguyen, Cuong Tat Nguyen, Grant Le Nguyen, Quyen Nguyen, Trang Huyen Nichols, Emma Ningrum, Dina Nur Anggraini Nong, Vuong Minh Norrving, Bo Noubiap, Jean Jacques N Ogbo, Felix Akpojene Owolabi, Mayowa O Pandian, Jeyaraj D. Parmar, Priyakumari Ganesh Pereira, David M Petzold, Max Phillips, Michael Robert Piradov, Michael A Poulton, Richie G. Pourmalek, Farshad Qorbani, Mostafa Rafay, Anwar Rahman, Mahfuzar Rahman, Mohammad HifzUr Rai, Rajesh Kumar Rajsic, Sasa Ranta, Annemarei Rawaf, Salman Renzaho, Andre M.N. Rezai, Mohammad Sadegh Roth, Gregory A Roshandel, Gholamreza Rubagotti, Enrico Sachdev, Perminder Safiri, Saeid Sahathevan, Ramesh Sahraian, Mohammad Ali Samy, Abdallah M. Santalucia, Paula Santos, Itamar S Sartorius, Benn Satpathy, Maheswar Sawhney, Monika Saylan, Mete I Sepanlou, Sadaf G Shaikh, Masood Ali Shakir, Raad Shamsizadeh, Morteza Sheth, Kevin N Shigematsu, Mika Shoman, Haitham Silva, Diego Augusto Santos Smith, Mari Sobngwi, Eugene Sposato, Luciano A Stanaway, Jeffrey D Stein, Dan J Steiner, Timothy J Stovner, Lars Jacob Abdulkader, Rizwan Suliankatchi EI Szoeke, Cassandra Tabarés-Seisdedos, Rafael Tanne, David Theadom, Alice M Thrift, Amanda G Tirschwell, David L Topor-Madry, Roman Tran, Bach Xuan Truelsen, Thomas Tuem, Kald Beshir Ukwaja, Kingsley Nnanna Uthman, Olalekan A Varakin, Yuri Y Vasankari, Tommi Venketasubramanian, Narayanaswamy Vlassov, Vasiliy Victorovich Wadilo, Fiseha Wakayo, Tolassa Wallin, Mitchell T Weiderpass, Elisabete Westerman, Ronny Wijeratne, Tissa Wiysonge, Charles Shey Woldu, Minyahil Alebachew Wolfe, Charles D A Xavier, Denis Xu, Gelin Yano, Yuichiro Yimam, Hassen Hamid Yonemoto, Naohiro Yu, Chuanhua Zaidi, Zoubida El Sayed Zaki, Maysaa Zunt, Joseph R Murray, Christopher J L and Vos, Theo 2017. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Neurology, Vol. 16, Issue. 11, p. 877.

    Herold, Fabian Hamacher, Dennis Schega, Lutz and Müller, Notger G. 2018. Thinking While Moving or Moving While Thinking – Concepts of Motor-Cognitive Training for Cognitive Performance Enhancement. Frontiers in Aging Neuroscience, Vol. 10, Issue. ,

    Tomioka, Kimiko Kurumatani, Norio and Hosoi, Hiroshi 2018. Beneficial effects of working later in life on the health of community-dwelling older adults. Geriatrics & Gerontology International, Vol. 18, Issue. 2, p. 308.

    Tampi, Rajesh R. Tampi, Deena J. Canio, Wynnelena C. Alag, Poorvanshi Dasarathy, Dhweeja and Dey, Joel P. 2018. Psychiatric Disorders Late in Life. p. 139.

    Park, JinKyung Jeong, EunHye and Seomun, GyeongAe 2018. The clock drawing test: A systematic review and meta‐analysis of diagnostic accuracy. Journal of Advanced Nursing, Vol. 74, Issue. 12, p. 2742.

    Zhou, Yi Slachevasky, Andrea and Calvo, Esteban 2018. Health conditions and unmet needs for assistance to perform activities of daily living among older adults with dementia in Chile. International Journal of Geriatric Psychiatry, Vol. 33, Issue. 7, p. 964.

    Commerford, Toby 2018. How many geriatricians should, at minimum, be staffing health regions in Australia?. Australasian Journal on Ageing, Vol. 37, Issue. 1, p. 17.

    Lu, Zhihui Harris, Tamara B. Shiroma, Eric J. Leung, Jason and Kwok, Timothy 2018. Patterns of Physical Activity and Sedentary Behavior for Older Adults with Alzheimer’s Disease, Mild Cognitive Impairment, and Cognitively Normal in Hong Kong. Journal of Alzheimer's Disease, Vol. 66, Issue. 4, p. 1453.

    Corcos, Jacques and Przydacz, Mikolaj 2018. Consultation in Neurourology. p. 17.

    Neilson, L J Thirugnanasothy, S and Rees, C J 2018. Colonoscopy in the very elderly. British Medical Bulletin, Vol. 127, Issue. 1, p. 33.

    Törpel, Alexander Herold, Fabian Hamacher, Dennis Müller, Notger and Schega, Lutz 2018. Strengthening the Brain—Is Resistance Training with Blood Flow Restriction an Effective Strategy for Cognitive Improvement?. Journal of Clinical Medicine, Vol. 7, Issue. 10, p. 337.

    Wang, Jen-Chun Chien, Wu-Chien Tzeng, Nian-Sheng Chung, Chi-Hsiang Lin, Chih-Yuan and Tsai, Shih-Hung 2018. Surgical repair of aortic aneurysms and reduced incidence of dementia. International Journal of Cardiology,

    Sluggett, Janet K. Hendrix, Ivanka and Bell, J. Simon 2018. Evidence-based deprescribing of proton pump inhibitors in long-term care. Research in Social and Administrative Pharmacy, Vol. 14, Issue. 2, p. 124.

    ×

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        The Prevalence and Incidence of Dementia: a Systematic Review and Meta-analysis
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        The Prevalence and Incidence of Dementia: a Systematic Review and Meta-analysis
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        The Prevalence and Incidence of Dementia: a Systematic Review and Meta-analysis
        Available formats
        ×
Export citation

Abstract

Introduction

Dementia is a common neurological condition affecting many older individuals that leads to a loss of independence, diminished quality of life, premature mortality, caregiver burden and high levels of healthcare utilization and cost. This is an updated systematic review and meta-analysis of the worldwide prevalence and incidence of dementia.

Methods

The MEDLINE and EMBASE databases were searched for relevant studies published between 2000 (1985 for Canadian papers) and July of 2012. Papers selected for full-text review were included in the systematic review if they provided an original population-based estimate for the incidence and/or prevalence of dementia. The reference lists of included articles were also searched for additional studies. Two individuals independently performed abstract and full-text review, data extraction, and quality assessment of the papers. Random-effects models and/or meta-regression were used to generate pooled estimates by age, sex, setting (i.e., community, institution, both), diagnostic criteria utilized, location (i.e., continent) and year of data collection.

Results

Of 16,066 abstracts screened, 707 articles were selected for full-text review. A total of 160 studies met the inclusion criteria. Among individuals 60 and over residing in the community, the pooled point and annual period prevalence estimates of dementia were 48.62 (CI95%: 41.98-56.32) and 69.07 (CI95%: 52.36-91.11) per 1000 persons, respectively. The respective pooled incidence rate (same age and setting) was 17.18 (CI95%: 13.90-21.23) per 1000 person-years, while the annual incidence proportion was 52.85 (CI95%: 33.08-84.42) per 1,000 persons. Increasing participant age was associated with a higher dementia prevalence and incidence. Annual period prevalence was higher in North America than in South America, Europe and Asia (in order of decreasing period prevalence) and higher in institutional compared to community and combined settings. Sex, diagnostic criteria (except for incidence proportion) and year of data collection were not associated with statistically significant different estimates of prevalence or incidence, though estimates were consistently higher for females than males.

Conclusions

Dementia is a common neurological condition in older individuals. Significant gaps in knowledge about its epidemiology were identified, particularly with regard to the incidence of dementia in low- and middle-income countries. Accurate estimates of prevalence and incidence of dementia are needed to plan for the health and social services that will be required to deal with an aging population.

Introduction

Dementia as defined in the Diagnostic and Statistical Manual of Mental Disorders–IV–Text Revision (DSM–IV–TR) is an acquired condition marked by impairments in memory and at least one other cognitive domain that are severe enough to cause significant limitations in social and/or occupational functioning and are not accounted for by a delirium or another Axis I disorder. 1 The DSM–5 renames dementia as major neurocognitive disorder. 2 For diagnosis there must be evidence of significant decline in at least one cognitive domain that is severe enough to interfere with independence in everyday activities. 2 Compared to earlier versions of the DSM, memory loss and impairments in multiple cognitive domains are no longer required features. 2 The various causes of dementia are categorized by their neuropathology, clinical features and/or presumed aetiology. The commoner ones encountered in middle-aged and older individuals are Alzheimer’s disease, vascular, Lewy body and frontotemporal dementia. They occur either as the sole cause of dementia (i.e., “pure” disease) or as combinations of two or more brain pathologies.

In addition to its significant personal toll, dementia is a major contributor to healthcare costs. 3 A 2013 report estimated that the annual cost of dementia in the United States was $157–215 billion US. 4 The total economic burden of dementia in Canada in 2008 was estimated to be $15 billion dollars. 5 The World Health Organization recognized dementia as a public health priority in 2012. 6 Age is the most important risk factor for dementia, with prevalence doubling every 5 years after 65 (from approximately 2-3% in those 65-69 to 30%+ among individuals over 80). 7 - 12 It might also be more common among women, though the literature is inconsistent on this point. 12 , 13 High prevalence estimates are found in long-term care institutions, 14 with the majority of those in these settings with moderate to severe dementia. 15 With societal aging, the burden of this condition will increase over the coming years. It is anticipated that the number suffering from dementia worldwide will double by 2030 and triple by 2050. 6

Whether the incidence and/or prevalence of dementia are changing over time is a key question about the epidemiology of this condition. Recent studies suggest that the age-adjusted incidence and/or prevalence of dementia in older populations could be changing over time but not in a consistent pattern, with estimates decreasing in high-income countries but increasing in middle-income ones. As an example of the former, investigators using data from the Rotterdam Study reported a nonsignificant decline in age-adjusted incidence rates between 1990 and 2010 among those 65+ (incidence rate ratio 0.75, CI95%: 0.56-1.02), possibly on the basis of better control of vascular risk factors. In parallel with an increase in the use of antithrombotics and lipid-lowering drugs over time, brain MRIs showed fewer lacunar infarcts. 16 It is plausible that improved cardiovascular risk management would be associated with a decreased incidence but stable prevalence (or a prevalence that is decreasing less markedly than incidence) of dementia as populations affected by dementia would live longer. Matthews et al. 17 of the UK Medical Research Council Cognitive Function and Ageing Study (CFAS) found that the age- and sex-standardized prevalence of dementia among those 65+ years of age in three geographically defined areas of England was 65 per 1000 in 2011. This was significantly lower than the predicted rate based on 1991 data of 83 per 1000. There was a lower response rate in the 2011 study, but sensitivity analyses suggest that the estimates were robust to this. On the other hand, a systematic review of reports on the epidemiology of dementia in China found that the prevalence rose from 18 per 1,000 (65-69 years of age) and 421 per 1000 (95-99 years) to 26 per 1000 and 605 per 1000 respectively, between 1990 and 2010. 18 With societal aging worldwide, the number of individuals with dementia will increase, but there is uncertainty about what the actual number will be. 19 Aside from the importance of having accurate up-to-date figures for planning services to deal with the needs of those suffering from dementia, a better understanding of whether incidence and/or prevalence is changing would have important scientific and clinical consequences. For one thing, a decline would suggest that future rates are partially modifiable and that effectively dealing with modifiable risk factors might delay the onset if not entirely prevent the development of dementia as we age.

The specific objectives of this report are to: (1) provide estimates of the overall worldwide prevalence and incidence of dementia; (2) examine factors that underlie the heterogeneity of estimates (age, sex, setting [i.e., community, institution, both], diagnostic criteria, location of study [i.e., continent]); and (3) search for evidence of change over time in the prevalence and/or incidence of dementia. This study updates and extends the scope of previous reports on the epidemiology of this condition. 9 - 14

Methods

This is one in a series of systematic reviews on the prevalence and incidence of priority neurological conditions funded by the Public Health Agency of Canada as part of the National Population Health Study of Neurological Conditions. 20

Search Strategy

The systematic review and meta-analysis were conducted according to a predetermined protocol based on the PRISMA statement for systematic reviews and meta-analyses. 21 Study authors with expertise in dementia and disease epidemiology and a research librarian with systematic review expertise developed the search strategy and terms (see Appendix A). The MEDLINE and EMBASE databases were searched from January 1985 to February 2011, with references exported and managed using EndNote X5. 22 The search was updated in July of 2012. Due to the availability of prior systematic reviews covering earlier time periods, only international studies published after 1999 were included in our systematic review. Because of the national focus of this project, Canadian studies published between 1985 and 1999 were also included in order to ensure that the Canadian Study of Health and Aging (a large and impactful national study on the epidemiology of dementia) was captured. 9 Articles had to be published in either English or French. The reference lists of included articles were manually searched for additional relevant references.

Study Selection

Two reviewers independently screened the titles and abstracts of all identified references to determine if they appeared to report original data on the prevalence or incidence of dementia. Studies clearly not population-based were excluded at this stage. Two reviewers independently examined the full-text articles identified in the first phase. For inclusion in the systematic review, articles had to meet the following criteria: (1) original research; (2) population-based; and (3) reported an incidence and/or prevalence estimate of dementia. Reviewers fluent in the language of the article examined the paper. Disagreements pertaining to the inclusion of articles were resolved by consensus and, if not reached, by involvement of a third study author.

Data Extraction and Study Quality

Two reviewers independently extracted and reached agreement on data from included articles using a standard data collection form. When multiple articles reported data from the same study population, the reviewers made a judgment as to the most comprehensive and accurate data available, which was then used in analyses. In cases where the studies reported on different timeframes or subgroups (e.g., by sex or age), all data were included. Demographic data recorded included age, sex, study setting (i.e., community, institution, both), and geographic location of study (i.e., continent, country). As not all studies reported on the mean or median age of participants, the youngest age of participants included in a study was employed in our analyses of age. The definitions/diagnostic criteria used for determining the presence of dementia were noted. Incidence and prevalence estimates of dementia from each study were recorded, along with any stratification by age, sex or year of data collection. The quality of the included studies was evaluated using an assessment tool 23 , 24 (Appendix B) that assessed such factors as sample representativeness, methods used to determine the presence of dementia, and statistical methods. Each study was given a quality score that ranged from 0 (lowest) to 8 (highest). ANOVA testing was done to determine if study quality varied by location of study (i.e., continent).

Data Synthesis and Analysis

The significance of the impact of age, sex, setting, diagnostic criteria, continent and year of data collection (i.e., when the study was done) on incidence and prevalence estimates was assessed using meta-regression. Age was examined using the youngest age of participants in the study as a continuous variable. Sex, setting, diagnostic criteria and location (i.e., continent) were examined as categorical variables. Changes over time were examined in three separate sensitivity analyses using study start, midpoint and end-years of data collection. All pooled estimates provided are restricted to studies reporting on people aged 60+, 65+ or 70+ to mitigate the potential confounding effects of age. Estimates were also stratified by study setting to limit potential confounding by disease severity. Finally, all estimates reporting on a period (e.g., period prevalence) were converted to annual estimates (e.g., annual prevalence) without restricting time-years.

To be eligible for inclusion in the meta-analysis, studies had to provide either the estimate with 95% confidence intervals (CI95%), or the number of dementia cases along with the sample size, so the prevalence or incidence estimates could be calculated. Additionally, a subgroup was only included in the subgroup analysis if more than one study was available for that subgroup.

To assess for significant between-study heterogeneity, the Cochrane Q statistic was calculated and I 2 was used to quantify the magnitude of between-study heterogeneity. All the pooled estimates and 95% confidence intervals were calculated using a random-effects model. Publication bias was investigated visually using funnel plots and statistically using Begg’s 25 and Egger’s 26 tests.

All statistical analyses were carried out with R version 2.14. 27 The meta package was employed to produce the pooled estimates, forest plots and publication bias assessment. 28 The metafor package was used to conduct the meta-regression using restricted maximum likelihood estimation. 29 A p value <0.05 was deemed to be statistically significant.

Results

Identification and Description of Studies

The search strategy yielded a total of 16,066 citations, including duplicates (8,743 from MEDLINE and 7,323 from EMBASE). A total of 707 articles were selected for full-text review (Figure 1), of which 547 were excluded (i.e., 230 were international studies published before 2000, 164 did not report an incidence or prevalence of dementia, 114 were not population-based, while 39 provided no original data). An additional four articles were identified by the updated search, while manual reference searching of included papers led to an additional 12 articles, though these papers did not report estimates of overall dementia, but rather only reported on dementia subtypes. Thus, a total of 160 studies were retained, the characteristics of which are shown in Tables 13. Twenty studies were not eligible for meta-analysis because they reported duplicate data or did not provide the information necessary to calculate an estimate. A total of 67 studies met the eligibility criteria (described earlier) for inclusion in the meta-analysis of those aged 60+, 65+ or 70+ years.

Figure 1 Study flow diagram.

Table 1 Studies Reporting on the Prevalence of Dementia

Table 2 Studies Reporting on the Incidence Rate of Dementia

Table 3 Studies Reporting on the Incidence Proportion of Dementia

Of the 160 total studies, 111 reported on prevalence, 9 , 11 , 14 , 30 - 137 44 on incidence, 8 , 10 , 138 - 179 and 5 on both. 7 , 180 - 183 Sixty-three originated from Europe, 45 Asia, 43 North America, 7 South America, 5 Australia and 4 Africa (seven studies reported on data from more than one continent).

Prevalence of Dementia

Sixty-six articles reported on the point prevalence of dementia, 7 , 9 , 32 , 33 , 36 , 38 , 40 - 45 , 47 , 50 - 52 , 54 - 57 , 64 , 67 - 69 , 71 , 73 - 75 , 77 - 80 , 82 , 83 , 88 - 90 , 97 , 98 , 101 - 103 , 105 - 109 , 112 - 115 , 117 , 120 , 121 , 123 - 125 , 127 - 131 , 133 , 135 , 137 , 181 with 29 eligible for inclusion (i.e., provided an estimate with 95% confidence intervals, etc.) in the meta-analysis of those including populations aged 60+, 65+ or 70+ years. 9 , 32 , 33 , 38 , 41 - 43 , 50 - 52 , 54 , 67 , 71 , 73 , 75 , 78 , 82 , 89 , 90 , 98 , 113 , 120 , 123 - 125 , 129 , 131 , 135 , 181

In all studies reporting on the point prevalence of dementia (n=66), the majority of studies used a single data source to identify cases (n=51). These included door-to-door surveys (n=16), registry studies (n=10), other sources (n=10), administrative databases (n=3), mail surveys (n=1) and hospital/clinic reviews (n=1). It was not possible to determine the data source in 10 of these studies. A total of 15 studies used multiple data sources. Half (n=33) of the 66 included studies used a single diagnostic method, including a standardized assessment by a healthcare professional (n=26), administrative data codes (n=2), medical chart review (n=2), other sources (n=2) and self-report of a physician diagnosis (n=1).

The pooled point prevalence of dementia per 1000 in 23 community-setting studies was 48.62 (CI95%: 41.98-56.32), while the pooled point prevalence in combined community and institution settings (n=5) was 57.98 (CI95%: 42.02-80.00) (Figure 2). The point prevalence of dementia within institutions (n=2) was 581.09 (CI95%: 558.48-604.61) per 1000. Among the 29 eligible studies reporting on the point prevalence of dementia, estimates ranged from 8.00 per 1000 in a community-only study from India 75 to 592.51 per 1000 in an institutional sample from Taiwan. 43

Figure 2 Pooled point prevalence of dementia.

Fifty articles reported on the period prevalence for dementia, 11 , 14 , 30 , 31 , 34 , 35 , 37 , 39 , 46 , 48 , 49 , 53 , 58 - 63 , 65 , 66 , 70 , 72 , 76 , 81 , 84 - 87 , 91 - 96 , 99 , 100 , 104 , 110 , 111 , 116 , 118 , 119 , 122 , 126 , 132 , 134 , 136 , 180 , 182 , 183 with 18 eligible for inclusion (see Methods section) in the meta-analysis. 14 , 46 , 48 , 58 - 61 , 66 , 76 , 81 , 85 - 87 , 93 , 116 , 122 , 134 , 180 , 183

In the 50 studies that reported on the period prevalence of dementia, the majority (n=39) used a single source of the study population, including door-to-door surveys (n=21), registries (n=8), other sources (n=4), administrative databases (n=2) and a census (n=1). It was not possible to determine the data source in three studies. Twenty-six of the 50 included studies used a single methodology to identify cases—the majority used a standardized assessment by a health professional (n=22), followed by administrative data codes (n=3). It was not possible to determine how they identified cases in one study.

In community-only settings (n=14), the pooled annual period prevalence per 1000 was 69.07 (CI95%: 52.36-91.11) compared to 72.66 (CI95%: 42.96-122.91) in combined community and institution samples (n=2) and 533.24 per 1000 within institutions (n=2) (Figure 3). Among individual studies, the annual period prevalence estimates ranged from 7.92 in a community-only sample in India 48 to 593.00 per 1000 in an institutional study from the United Kingdom. 14

Figure 3 Pooled period prevalence of dementia.

Incidence of Dementia

Seventeen studies reported on the incidence proportion of dementia, 10 , 138 - 140 , 142 , 146 , 148 , 150 , 151 , 155 , 157 , 159 , 165 , 167 , 175 , 176 , 183 with 10 eligible for inclusion in the meta-analysis of those aged 60+, 65+ or 70+ years. 139 , 140 , 148 , 150 , 157 , 159 , 165 , 175 , 176 , 183 All were from community settings. Of 17 studies reporting on the incidence proportion of dementia, 16 used a single methodology to recruit participants, most frequently door-to-door survey (n=5). Other approaches included administrative databases (n=3), registries (n=2), hospital/clinic chart reviews (n=1) and other methods (n=1). It was not possible to determine the data source in two cases, and one study used another methodology. In order to ascertain cases, most studies (n=11) used multiple sources of data (e.g., healthcare professional diagnosis and imaging test results). Six studies based the case ascertainment purely on a healthcare professional assessment.

A random-effects model found that the overall pooled incidence proportion of dementia per 1000 was 52.85 (CI95%: 33.08-84.42) (Figure 4). Among the included studies, incidence proportion estimates ranged from 8.70 in a Japanese study 139 to 142.22 per 1000 in a U.S. one. 157

Figure 4 Pooled incidence proportion of dementia.

Thirty-two studies reported on the incidence rate of dementia, 7 , 8 , 141 , 143 - 145 , 147 , 149 , 152 - 154 , 156 , 158 , 160 - 164 , 166 , 168 - 174 , 177 - 182 with nine eligible for inclusion in the meta-analysis. 141 , 143 , 145 , 156 , 158 , 166 , 170 , 174 , 177 , 178 The majority of the 32 studies reporting on the incidence rate of dementia used a single source to identify their population (n=21)—these sources were door-to-door surveys (n=8), registries (n=6), administrative databases (n=3) and other sources in two studies. It was not possible to determine the data source in another two studies. Fifteen of the 32 studies used a single methodology to identify cases, including a standardized assessment by a health professional (n=10), chart review (n=4) and administrative data codes (n=1). The remaining 17 used multiple sources.

In community-only settings, the pooled incidence rate of dementia per 1000 person-years was 17.18 (CI95%: 13.90-21.23). In a single combined community and institution study, the estimated incidence rate was 13.33 per 1000 person-years (CI95%: 11.18-15.89) (there were no institution-only studies) (Figure 5). The incidence rate estimates ranged from 8.11 per 1000 person-years in a community-only study from the Netherlands 178 to 37.80 per 1000 person-years in a community-only study from Italy. 170

Figure 5 Pooled incidence rate of dementia.

Sources of Heterogeneity

In our exploration of sources of heterogeneity, we restricted our analyses to studies reporting on individuals 60+, 65+ or 70+ in order to minimize the potential confounding effects of age. Because of the small number of studies, we could not explore the interaction between the potential sources of heterogeneity.

Age

Using the youngest-aged person in a study to assess this characteristic, a series of meta-regression analyses revealed that increasing age was significantly associated (p<0.001) with a higher prevalence or incidence of dementia.

Sex

Meta-regression showed no statistically significant differences between the sexes on any of our estimates, though estimates were consistently higher in females (p>0.05).

Setting

Point Prevalence. Estimates from institution-only settings were significantly higher than those from community-only and combined community and institution settings (p<0.0001). The difference in point prevalence in combined community and institutional settings (57.98 [CI95%: 42.02-80.00] per 1000) compared to community-only ones (48.62 [CI95%: 41.98-56.32] per 1000) was not statistically significant (p=0.33).

Annual Period Prevalence. No significant difference in pooled estimates of annual period prevalence was found between community-only (70.86 [CI95%: 55.78-90.03] per 1000) and combined community and institution settings (72.66 [CI95%: 42.96-122.91] per 1000). Annual period prevalence was significantly higher in institution-only settings (533.24 [CI95%: 435.25-653.28] per 1000, p<0.0001).

Incidence Proportion and Rate. Estimates for incidence proportion were derived solely from community-only settings. There was an insufficient number of studies from non-community settings to assess incidence rate.

Diagnostic Criteria

Comparisons were restricted to studies done in the same setting (community-only, community and institution, institution-only) and where the specific criteria were utilized by more than one study.

Point Prevalence. In community-only settings, there were only sufficient studies for analysis using either DSM–IV (n=16) or DSM–III–R (n=4) diagnostic criteria. There was no significant difference (p=0.33) in the pooled point prevalence estimates between these two criteria.

DSM–IV (n=3) and DSM–III–R (n=2) were the most commonly used criteria in combined community and institutional settings (and the only criteria eligible for inclusion). There was no significant difference (p=0.30) in pooled point prevalence estimates between them.

Annual Period Prevalence. Community-only studies eligible for this analysis employed either DSM–III–R (n=4) or the DSM–IV (n=11) criteria. There was no significant difference (p=0.49) between their estimates for the annual period prevalence.

Incidence Proportion and Rate. In community-only settings, the most commonly used criteria to determine incidence proportion were the DSM–III–R (n=3) and the DSM–IV (n=4). These pooled estimates of the incidence proportion differed significantly from each other, with estimates higher in DSM–IV studies (p=0.03). The only available study for incidence rate used DSM–III–R criteria.

Region

Point Prevalence. Among community-only studies, there were no significant differences in pooled estimates between Asia (n=12), Europe (n=7), North America (n=4) and South America (n=3). There were no differences between Europe (n=3) and North America (n=2) in the pooled point prevalence of dementia among community and institutional studies. The institution-only estimates from North America (n=1) and Asia (n=1) were very similar.

Annual Period Prevalence. There were estimates from four continents for the annual pooled period prevalence of dementia in community-only studies (Asia [n=6], Europe [n=3], North America [n=4], South America [n=2]). The pooled North American annual estimate (129.81 [CI95%: 104.73-160.91] per 1000) was significantly higher than that of Asia (45.24 [CI95%: 25.91-78.99] per 1000), Europe (47.98 [CI95%: 31.95-72.07] per 1000) and South America (69.63 [CI95%: 53.28-91.00] per 1000).

Incidence Proportion. There were community-only studies from two continents (Europe [n=2], North America [n=5]). The estimates from North America (75.48 [CI95%: 47.37-120.28] per 1000) and Europe (64.75 [28.37-147.79] per 1000) were not significantly different (p=0.75).

Incidence Rate. In community-only studies, there were estimates from two continents (Europe [n=5], North America [n=3]). There were no significant differences (p=0.18) in the estimates among them.

Year of Data Collection

Meta-regression revealed that there were no significant changes over time in the incidence or prevalence of dementia.

Publication Bias

There was no evidence of publication bias with either Begg’s or Egger’s test for point prevalence (p>0.05). Evidence of publication bias was found for the period prevalence on both Begg’s and Egger’s tests where smaller studies of the effect were potentially missing (p<0.0001). For the incidence rate, there was no evidence of publication bias on either the Begg’s (p>0.05) or Egger’s (p>0.05) test. Evidence of publication bias was found for the incidence proportion using the Egger’s (p=0.037) but not the Begg’s (p>0.05) test.

Study Quality

The median study quality score was 6 (range 2-8). ANOVA testing did not reveal any statistical difference in study quality by continent (see Table 4 for details).

Table 4 Quality assessment scores of dementia incidence and prevalence studies

*Note: NR= Not reported; NC= Not clear

Discussion

This systematic review and meta-analysis of the global incidence and prevalence of dementia provides overall estimates as well as subgroup analyses by age, sex, setting, diagnostic criteria, study location (e.g., continent) and year of data collection. While, as expected, the incidence and prevalence of dementia rose with increasing age, no significant differences in the pooled estimates between men and women were found. There was a non-significant trend for community-only settings to have a lower prevalence than combined community plus institution studies, while the prevalence estimate was significantly higher in institution-only settings. Other than for incidence proportion, there were no significant differences between studies using the DSM–III–R and DSM–IV diagnostic criteria. North American pooled period prevalence and incidence proportion estimates were the highest, while those from Asia were lowest. Estimates of prevalence and incidence did not change over time. Unfortunately, we were not able to show the decline found in some recent studies. 16 , 17 This could have a significant impact on the future burden of this condition. As noted earlier, with societal aging it is anticipated that the number of people with dementia worldwide will double by 2030 and triple by 2050. 6 A decline in prevalence as seen in the CFAS 17 would lower estimates of future costs for dealing with dementia in the United States by approximately 40%. 184

The present study updates the body of literature on the epidemiology of dementia. Compared to other systematic reviews, a broader perspective was generally taken. For example, a recent systematic review on the prevalence of dementia was restricted to persons diagnosed only with DSM–IV and ICD–10 criteria and did not assess heterogeneity by any factor other than geographic region, 185 or focused only on China or Asia and/or did not perform a systematic review or meta-analysis. 186 - 188

Erkinjuntti and colleagues 189 examined the effect of different diagnostic criteria on the prevalence of dementia in a large population-based cohort and found widely varying estimates (e.g., 3.1% using the ICD–10 classification system versus 29.1% with DSM–III criteria). More modest differences were found when DSM–III–R and DSM–IV criteria were compared (17.3 and 13.7%, respectively). In this report, we had a limited ability to explore the influence of diagnostic criteria but found evidence that DSM–III–R and DSM–IV criteria produced similar results, other than for incidence proportion.

Prior research has suggested that there might be significant regional differences in the prevalence and incidence of dementia. 185 Unfortunately, there are major limitations in the available data, such as a lack of nationally representative studies in a number of large countries, few reports from some regions of the world (e.g., Sub-Saharan Africa), and the marked heterogeneity seen between countries within a geographic region (i.e., studies carried out in one or two countries cannot be safely generalized to all nations within a specific region). Study quality did not vary by continent in the present analyses. The lowest estimates of period prevalence obtained from Asia are consistent with other recent systematic reviews where the incidence and/or prevalence of other neurodegenerative conditions (i.e., Parkinson’s and Huntington’s disease) have been reported to be lower in Asia. 190 , 191 A number of factors could account for these differences, including population genetics, exposure to environmental risk factors, differing life expectancy, and variations in case ascertainment due to the amount of stigma associated with certain conditions resulted in underreporting.

The strength of the conclusions that can be drawn from this study is limited by a number of factors. First, the quality of the included studies was variable and at times less than desired (e.g., no reporting of response rates or nonresponder characteristics). Second, significant heterogeneity was present among all estimates of prevalence and incidence. This was likely driven by the differing populations studied and methods used. There was evidence of publication bias for the incidence proportion and period prevalence of dementia, suggesting that there may be unpublished studies reporting differing results. Finally, some studies did not provide the specific data (e.g., proportion with CI95%, numerator and denominator, etc.) necessary to include them in the meta-analyses. To improve the comparability of studies and comprehensiveness of future meta-analyses in this area, an effort should be made to standardize study procedures and reporting.

In conclusion, dementia is a common neurological condition in older individuals. Significant gaps in knowledge about its epidemiology were identified. For example, there are few studies examining the incidence of dementia in low- and middle-income countries, where the disruptive impact of an aging population may be greatest in view of limited resources. Future research should also focus on assessing the impact of utilizing DSM–5 diagnostic criteria for major neurocognitive disorders on estimates, examining differences in rates among subgroups within a larger study population, where appropriate, and further assessing dementia in a variety of settings and geographic regions.

Acknowledgements

We would like thank Ms. Diane Lorenzetti, librarian at the University of Calgary, who guided the development of the search strategy for this systematic review. Our study is part of the National Population Health Study of Neurological Conditions. We acknowledge the membership of the Neurological Health Charities Canada and the Public Health Agency of Canada for their contribution to the success of this initiative. Funding for the study was provided by the Public Health Agency of Canada. The opinions expressed in this publication are those of the authors/researchers and do not necessarily reflect the official views of the Public Health Agency of Canada.

Disclosures

Kirsten Fiest, Jodie Roberts, Colleen Maxwell, Sandra Black, Laura Blaikie, Adrienne Cohen, Lundy Day, Jayna Holroyd-Leduc, Andrew Kirk, Dawn Pearson and Andres Venegas-Torres have nothing to disclose.

Nathalie Jetté has the following disclosures: Public Health Agency of Canada, Principal Investigator, research support; Canada Research Chair, Researcher, research support; Alberta Innovates Health Solutions, Researcher, research support.

David B. Hogan holds the Brenda Strafford Foundation Chair in Geriatric Medicine, though receives no salary support from this.

Statement of Authorship

KMF, NJ, JIR, CJM, TP and DBH contributed to study conception and design. KMF, NJ, JIR, CJM, EES, SEB, LB, AC, LD, JH, AK, DP, AV and DBH contributed to the acquisition of data. KMF conducted the data analysis. KMF, NJ, JIR, CJM, EES and DBH participated in the interpretation of study data. All authors participated in critically revising the manuscript for important intellectual content and gave final approval for the submission of this manuscript and any further submissions of this work.

Supplementary Material

To view the supplementary material that exist for this study (Appendix A and B), please visit http://dx.doi.org/10.1017/cjn.2016.18.

References

1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders–IV–Text Revision. Washington, DC: American Psychiatric Association; 1994.
2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders–5. Washington, DC: American Psychiatric Association; 2013.
3. Wimo, A, Jonsson, L, Bond, J, Prince, M, Winblad, B, Alzheimer Disease International. The worldwide economic impact of dementia 2010. Alzheimers Dement. 2013;9:1-11 e13.
4. Hurd, MD, Martorell, P, Delavande, A, Mullen, KJ, Langa, KM. Monetary costs of dementia in the United States. N Engl J Med. 2013;368:1326-1334.
5. Alzheimer Society of Canada. Rising Tide: The Impact of Dementia on Canadian Society. Toronto, ON: Alzheimer Society of Canada; 2010.
6. World Health Organization. Dementia: A Public Health Priority. Geneva: World Health Organization; 2012.
7. Li, S, Yan, F, Li, G, Chen, C, Zhang, W, Liu, J, et al. Is the dementia rate increasing in Beijing? Prevalence and incidence of dementia 10 years later in an urban elderly population. Acta Psychiatr Scand. 2007;115:73-79.
8. Corrada, MM, Brookmeyer, R, Paganini-Hill, A, Berlau, D, Kawas, CH. Dementia incidence continues to increase with age in the oldest old: the 90+ study. Ann Neurol. 2010;67:114-121.
9. Canadian Study of Health and Aging: study methods and prevalence of dementia. CMAJ. 1994;150:899-913.
10. The Canadian Study of Health and Aging Working Group. The incidence of dementia in Canada. Neurology. 2000;55:66-73.
11. Ebly, EM, Parhad, IM, Hogan, DB, Fung, TS. Prevalence and types of dementia in the very old: results from the Canadian Study of Health and Aging. Neurology. 1994;44:1593-1600.
12. Hendrie, HC. Epidemiology of dementia and Alzheimer’s disease. Am J Geriatr Psychiatry. 1998;6:S3-18.
13. Morris, JC. Dementia update 2005. Alzheimer Dis Assoc Disord. 2005;19:100-117.
14. Matthews, FE, Dening, T, UK Medical Research Council Cognitive Function and Ageing Study. Prevalence of dementia in institutional care. Lancet. 2002;360:225-226.
15. Fratiglioni, L, Forsell, Y, Aguero Torres, H, Winblad, B. Severity of dementia and institutionalization in the elderly: prevalence data from an urban area in Sweden. Neuroepidemiol. 1994;13:79-88.
16. Schrijvers, E, Verhaaren, B, Koudstaal, P, Hofman, A, Ikram, MB, Breteler, MM. Is dementia incidence declining? Trends in dementia incidence since 1990 in the Rotterdam Study. Neurology. 2012;78:1456-1463.
17. Matthews, FE, Arthur, A, Barnes, LE, Bond, J, Jagger, C, Robinson, L, et al. A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: results of the Cognitive Function and Ageing Study I and II. Lancet. 2013;382:1405-1412.
18. Chan, KY, Wang, W, Wu, JJ, Liu, L, Theodoratou, E, Car, J, et al. Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990-2010: a systematic review and analysis. Lancet. 2013;381:2016-2023.
19. Larson, EB, Langa, KM. Aging and incidence of dementia: a critical question. Neurology. 2012;78:1452-1453.
20. Caesar-Chavannes, C, MacDonald, S. Cross-Canada Forum: National Population Health Study of Neurological Conditions in Canada. Chronic Dis Inj Can. 2013;33:188-191.
21. Moher, D, Liberati, A, Tetzlaff, J, Altman, DG, PRISMA Group. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.
22. Endnote X5. New York: Thompson Reuters, 2011. Available from http://endnote.com/downloads/available-updates.
23. Boyle, MH. Guidelines for evaluating prevalence studies. Evid Based Ment Health. 1998;1:37-39.
24. Loney, PL, Chambers, LW, Bennett, KJ, Roberts, JG, Strafford, PW. Critical appraisal of health literature: prevalence or incidence of a health problem. Chronic Dis Can. 1998;19:170-176.
25. Begg, C, Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088-1101.
26. Egger, M, Smith, G. Bias in meta-analysis detected by simple, graphical test. BMJ. 1997;315:629-634.
27. R: A Language and Environment for Statistical Computing [computer program]. Vienna, Austria: R Foundation for Statistical Computing; 2011.
28. Schwarzer, G. meta: Meta-Analysis with R. R package version 16-1 2010.
29. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J Stat Soft. 2010;36:1-48.
30. Aguero Torres, H, von Strauss, E, Viitanen, M, Winblad, B, Fratiglioni, L. Institutionalization in the elderly: the role of chronic diseases and dementia. Cross-sectional and longitudinal data from a population-based study. J Clin Epidemiol. 2001;54:795-801.
31. Andersen-Ranberg, K, Vasegaard, L, Jeune, B. Dementia is not inevitable: a population-based study of Danish centenarians. J Gerontology B Psychol Sci Soc Sci. 2001;56:P152-P159.
32. Anttila, T, Helkala, EL, Kivipelto, M, Hallikainen, M, Alhainen, K, Heinonen, H, et al. Midlife income, occupation, APOE status, and dementia: a population-based study. Neurology. 2002;59:887-893.
33. Anttila, T, Helkala, EL, Viitanen, M, Kåreholt, I, Fratiglioni, L, Winblad, B, et al. Alcohol drinking in middle age and subsequent risk of mild cognitive impairment and dementia in old age: a prospective population based study. BMJ. 2004;329:539.
34. Arslantas, D, Ozbabalik, D, Metintas, S, Ozkan, S, Kalyoncu, C, Ozdemir, G, et al. Prevalence of dementia and associated risk factors in Middle Anatolia, Turkey. J Clin Neurosci. 2009;16:1455-1459.
35. Banerjee, TK, Mukherjee, CS, Dutt, A, Shekhar, A, Hazra, A. Cognitive dysfunction in an urban Indian population: some observations. Neuroepidemiology. 2008;31:109-114.
36. Benedetti, MD, Salviati, A, Filipponi, S, Manfredi, M, De Togni, L, Gomez Lira, M, et al. Prevalence of dementia and apolipoprotein e genotype distribution in the elderly of Buttapietra, Verona Province, Italy. Neuroepidemiology. 2002;21:74-80.
37. Bennett, HP, Piguet, O, Grayson, DA, Creasey, H, Waite, LM, Broe, DA, et al. A 6-year study of cognition and spatial function in the demented and non-demented elderly: the Sydney Older Persons Study. Dement Geriatr Cogn Disord. 2003;16:181-186.
38. Bermejo-Pareja, F, Benito-Leon, J, Vega, S, Olazarán, J, de Toledo, M, Díaz-Guzmán, J, et al. Consistency of clinical diagnosis of dementia in NEDICES: a population-based longitudinal study in Spain. J Geriatr Psychiatry Neurol. 2009;22:246-255.
39. Borjesson-Hanson, A, Edin, E, Gislason, T, Skoog, I. The prevalence of dementia in 95 year olds. Neurology. 2004;63:2436-2438.
40. Borroni, B, Alberici, A, Grassi, M, Rozzini, L, Turla, M, Zanetti, O, et al. Prevalence and demographic features of early-onset neurodegenerative dementia in Brescia County, Italy. Alzheimer Dis Assoc Disord. 2011;25:341-344.
41. Bottino, CMC, Azevedo, D Jr., Tatsch, M, Hototian, SR, Moscoso, MA, Folquitto, J, et al. Estimate of dementia prevalence in a community sample from São Paulo, Brazil. Dement Geriatr Cogn Disord. 2008;26:291-299.
42. Camicioli, R, Willert, P, Lear, J, Grossmann, S, Kaye, J, Butterfield, P. Dementia in rural primary care practices in Lake County, Oregon. J Geriatr Psychiatry Neurol. 2000;13:87-92.
43. Chen, TF, Chiu, MJ, Tang, LY, Chiu, YH, Chang, SF, Su, CL, et al. Institution type-dependent high prevalence of dementia in long-term care units. Neuroepidemiology. 2007;28:142-149.
44. Chien, IC, Lin, YC, Chou, YJ, Lin, CH, Bih, SH, Lee, CH, et al. Treated prevalence and incidence of dementia among National Health Insurance enrolees in Taiwan, 1996-2003. J Geriatr Psychiatry Neurol. 2008;21:142-148.
45. Corrada, MM, Brookmeyer, R, Berlau, D, Paganini-Hill, A, Kawas, CH. Prevalence of dementia after age 90: results from the 90+ study. Neurology. 2008;71:337-343.
46. Cristina, S, Nicolosi, A, Hauser, WA, Leite, ML, Gerosa, E, Nappi, G. The prevalence of dementia and cognitive deficit in a rural population of 2442 residents in Northern Italy: a door-to-door survey. Eur J Neurol. 2001;8:595-600.
47. Dahl, A, Berg, S, Nilsson, SE. Identification of dementia in epidemiological research: a study on the usefulness of various data sources. Aging Clin Exp Res. 2007;19:381-389.
48. Das, SK, Biswas, A, Roy, J, Bose, P, Roy, T, Banerjee, TK, et al. Prevalence of major neurological disorders among a geriatric population in the metropolitan city of Kolkata. J Assoc Physicians India. 2008;56:175-181.
49. Das, SK, Biswas, A, Roy, T, Banerjee, TK, Mukherjee, CS, Raut, DK, et al. A random sample survey for prevalence of major neurological disorders in Kolkata. Indian J Med Res. 2006;124:163-172.
50. de Jesus Llibre, J, Fernandez, Y, Marcheco, B, Contreras, M, López, AM, Otero, M, et al. Prevalence of dementia and Alzheimer’s disease in a Havana municipality: A community-based study among elderly residents. MEDICC Rev. 2009;11:29-35.
51. De Ronchi, D, Berardi, D, Menchetti, M, Ferrari, G, Serretti, A, Dalmonte, E, et al. Occurrence of cognitive impairment and dementia after the age of 60: a population-based study from Northern Italy. Dement Geriatr Cogn Disord. 2005;19:97-105.
52. de Silva, HA, Gunatilake, SB, Smith, AD. Prevalence of dementia in a semi-urban population in Sri Lanka: report from a regional survey. Int J Geriatr Psychiatry. 2003;18:711-715.
53. Demirovic, J, Prineas, R, Loewenstein, D, Bean, J, Duara, R, Sevush, S, et al. Prevalence of dementia in three ethnic groups: the South Florida program on aging and health. Ann Epidemiol. 2003;13:472-478.
54. Di Carlo, A, Baldereschi, M, Amaducci, L, Maggi, S, Origoletto, F, Scarlato, G, et al. Cognitive impairment without dementia in older people: prevalence, vascular risk factors, impact on disability: the Italian Longitudinal Study on Aging. J Am Geriatr Soc. 2000;48:775-782.
55. Feldman, H, Clarfield, AM, Brodsky, J, King, Y, Dwolatzky, T. An estimate of the prevalence of dementia among residents of long-term care geriatric institutions in the Jerusalem area. Int Psychogeriatr. 2006;18:643-652.
56. Fish, M, Bayer, AJ, Gallacher, JEJ, Bell, T, Pickering, J, Pedro, S, et al. Prevalence and pattern of cognitive impairment in a community cohort of men in South Wales: methodology and findings from the Caerphilly Prospective Study. Neuroepidemiology. 2008;30:25-33.
57. Fujishima, M, Kiyohara, Y. Incidence and risk factors of dementia in a defined elderly Japanese population: the Hisayama study. Ann N Y Acad Sci. 2002;977:1-8.
58. Galasko, D, Salmon, D, Gamst, A, Olichney, J, Thal, LJ, Silbert, L, et al. Prevalence of dementia in Chamorros on Guam: relationship to age, gender, education, and APOE. Neurology. 2007;68:1772-1781.
59. Ganguli, M, Chandra, V, Kamboh, MI, Johnston, JM, Dodge, HH, Thelma, BK, et al. Apolipoprotein E polymorphism and Alzheimer disease: the Indo-US Cross-National Dementia Study. Arch Neurol. 2000;57:824-830.
60. Gascon-Bayarri, J, Rene, R, Del Barrio, JL, De Pedro-Cuesta, J, Ramón, JM, Manubens, JM, et al. Prevalence of dementia subtypes in El Prat de Llobregat, Catalonia, Spain: the PRATICON study. Neuroepidemiology. 2007;28:224-234.
61. Gavrila, D, Antunez, C, Tormo, MJ, Carles, R, García Santos, JM, Parrilla, G, et al. Prevalence of dementia and cognitive impairment in Southeastern Spain: the Ariadna study. Acta Neurol. Scand. 2009;120:300-307.
62. Gislason, TB, Sjogren, M, Larsson, L, Skoog, I. The prevalence of frontal variant frontotemporal dementia and the frontal lobe syndrome in a population-based sample of 85 year olds. J Neurol Neurosurg Psychiatry. 2003;74:867-871.
63. Gourie-Devi, M, Gururaj, G, Satishchandra, P, Subbakrishna, DK. Prevalence of neurological disorders in Bangalore, India: a community-based study with a comparison between urban and rural areas. Neuroepidemiology. 2004;23:261-268.
64. Graham, JE, Rockwood, K, Beattie, BL, Eastwood, R, Gauthier, S, Tuokko, H, et al. Prevalence and severity of cognitive impairment with and without dementia in an elderly population. Lancet. 1997;349:1793-1796.
65. Guerchet, M, M’Belesso, P, Mouanga, AM, Bandzouzi, B, Tabo, A, Houinato, DS, et al. Prevalence of dementia in elderly living in two cities of Central Africa: the EDAC survey. Dement Geriatr Cogn Disord. 2010;30:261-268.
66. Gureje, O, Ogunniyi, A, Kola, L. The profile and impact of probable dementia in a Sub-Saharan African community: Results from the Ibadan Study of Aging. J Psychosom Res. 2006;61:327-333.
67. Gurvit, H, Emre, M, Tinaz, S, Bilgic, B, Hanagasi, H, Sahin, H, et al. The prevalence of dementia in an urban Turkish population. Am J Alzheimers Dis Other Demen. 2008;23:67-76.
68. Hall, KS, Gao, S, Baiyewu, O, Lane, KA, Gureje, O, Shen, J, et al. Prevalence rates for dementia and Alzheimer’s disease in African Americans: 1992 versus 2001. Alzheimers Dement. 2009;5:227-233.
69. Harvey, RJ, Skelton-Robinson, M, Rossor, MN. The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry. 2003;74:1206-1209.
70. Helmer, C, Peres, K, Letenneur, L, Guttiérez-Robledo, LM, Ramaroson, H, Barberger-Gateau, P, et al. Dementia in subjects aged 75 years or over within the PAQUID cohort: prevalence and burden by severity. Dement. Geriatr Cogn Disord. 2006;22:87-94.
71. Herrera, E Jr., Caramelli, P, Silveira, ASB, Nitrini, R. Epidemiologic survey of dementia in a community-dwelling Brazilian population. Alzheimer Dis Assoc Disord. 2002;16:103-108.
72. Ikeda, M, Fukuhara, R, Shigenobu, K, Hokoishi, K, Maki, N, Nebu, A, et al. Dementia associated mental and behavioural disturbances in elderly people in the community: findings from the first Nakayama study. J Neurol Neurosurg Psychiatry. 2004;75:146-148.
73. Ikeda, M, Hokoishi, K, Maki, N, Nebu, A, Tachibana, N, Komori, K, et al. Increased prevalence of vascular dementia in Japan: a community-based epidemiological study. Neurology. 2001;57:839-844.
74. Ikejima, C, Yasuno, F, Mizukami, K, Sasaki, M, Tanimukai, S, Asada, T. Prevalence and causes of early-onset dementia in Japan: a population-based study. Stroke. 2009;40:2709-2714.
75. Jacob, KS, Kumar, PS, Gayathri, K, Abraham, S, Prince, MJ. The diagnosis of dementia in the community. Int Psychogeriatr. 2007;19:669-678.
76. Jhoo, JH, Kim, KW, Huh, Y, Lee, SB, Park, JH, Lee, JJ, et al. Prevalence of dementia and its subtypes in an elderly urban Korean population: results from the Korean Longitudinal Study on Health And Aging (KLoSHA). Dement Geriatr Cogn Disord. 2008;26:270-276.
77. Jitapunkul, S, Chansirikanjana, S, Thamarpirat, J. Undiagnosed dementia and value of serial cognitive impairment screening in developing countries: a population-based study. Geriatr Gerontol Int. 2009;9:47-53.
78. Jitapunkul, S, Kunanusont, C, Phoolcharoen, W, Suriyawongpaisal, P. Prevalence estimation of dementia among Thai elderly: a national survey. J Med Assoc Thai. 2001;84:461-467.
79. Juva, K, Verkkoniemi, A, Viramo, P, Polvikoski, T, Kainulainen, K, Kontula, K, et al. Apolipoprotein E, cognitive function, and dementia in a general population aged 85 years and over. Int Psychogeriatr. 2000;12:379-387.
80. Kahana, E, Galper, Y, Zilber, N, Korczyn, AD. Epidemiology of dementia in Ashkelon: the influence of education. J Neurol. 2003;250:424-428.
81. Kim, J, Jeong, I, Chun, JH, Lee, S. The prevalence of dementia in a metropolitan city of South Korea. Int J Geriatr Psychiatry. 2003;18:617-622.
82. Kivipelto, M, Helkala, EL, Laakso, M, Hänninen, T, Hallikainen, M, Alhainen, K, et al. Apolipoprotein E e4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med. 2002;137:149-155.
83. Kivipelto, M, Helkala, EL, Laakso, M, Laakso, MP, Hallikainen, M, Alhainen, K, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population-based study. BMJ. 2001;322:1447-1451.
84. Landi, F, Russo, A, Cesari, M, Barillaro, C, Onder, G, Zamboni, V, et al. The ilSIRENTE study: a prospective cohort study on persons aged 80 years and older living in a mountain community of Central Italy. Aging Clin Exp Res. 2005;17:486-493.
85. Langa, KM, Plassman, BL, Wallace, RB, Herzog, AR, Heeringa, SG, Ofstedal, MB, Burke, , et al. The Aging, Demographics, and Memory Study: study design and methods. Neuroepidemiology. 2005;25:181-191.
86. Lee, DY, Lee, JH, Ju, YS, Lee, KU, Kim, KW, Jhoo, JH, et al. The prevalence of dementia in older people in an urban population of Korea: the Seoul study. J Am Geriatr Soc. 2002;50:1233-1239.
87. Li, G, Rhew, IC, Shofer, JB, Kukull, WA, Breitner, JC, Peskind, E, et al. Age-varying association between blood pressure and risk of dementia in those aged 65 and older: a community-based prospective cohort study. J Am Geriatr Soc. 2007;55:1161-1167.
88. Livingston, G, Leavey, G, Kitchen, G, Manela, M, Sembhi, S, Katona, C. Mental health of migrant elders: the Islington study. Br J Psychiatry. 2001;179:361-366.
89. Llibre Rodriguez, J, Valhuerdi, A, Sanchez, II, Reyna, C, Guerra, MA, Copeland, JR, et al. The prevalence, correlates and impact of dementia in Cuba: a 10/66 group population-based survey. Neuroepidemiology. 2008;31:243-251.
90. Llibre Rodriguez, JJ, Ferri, CP, Acosta, D, Guerra, M, Huang, Y, Jacob, KS, et al. Prevalence of dementia in Latin America, India, and China: a population-based cross-sectional survey. Lancet. 2008;372:464-474.
91. Lovheim, H, Karlsson, S, Gustafson, Y. The use of central nervous system drugs and analgesics among very old people with and without dementia. Pharmacoepidemiol Drug Saf. 2008;17:912-918.
92. Luck, T, Luppa, M, Weber, S, Matschinger, H, Glaesmer, H, Konig, HH, et al. Time until institutionalization in incident dementia cases: results of the Leipzig Longitudinal Study of the Aged (LEILA 75+). Neuroepidemiology. 2008;31:100-108.
93. Magaziner, J, German, P, Zimmerman, SI, Hebel, JR, Burton, L, Gruber-Baldini, AL, et al. The prevalence of dementia in a statewide sample of new nursing home admissions aged 65 and older: diagnosis by expert panel. Epidemiology of Dementia in Nursing Homes Research Group. Gerontologist. 2000;40:663-672.
94. Maneno, MK, Lee, E, Wutoh, AK, Zuckerman, IH, Jackson, P, Lombardo, FA, et al. National patterns of dementia treatment among elderly ambulatory patients. J Natl Med Assoc. 2006;98:430-435.
95. Manton, KC, Gu, XL, Ukraintseva, SV. Declining prevalence of dementia in the U.S. elderly population. Adv Gerontol. 2005;16:30-37.
96. Martens, PJ, Fransoo, R, Burland, E, Burchill, C, Prior, HJ, Ekuma, O, et al. Prevalence of mental illness and its impact on the use of home care and nursing homes: a population-based study of older adults in Manitoba. Can J Psychiatry. 2007;52:581-590.
97. Mathuranath, PS, Cherian, PJ, Mathew, R, Kumar, S, George, A, Alexander, A, et al. Dementia in Kerala, South India: prevalence and influence of age, education and gender. Int J Geriatr Psychiatry. 2010;25:290-297.
98. Meguro, K, Ishii, H, Yamaguchi, S, Ishizaki, J, Shimada, M, Sato, M, et al. Prevalence of dementia and dementing diseases in Japan: the Tajiri project. Arch Neurol. 2002;59:1109-1114.
99. Mehlig, K, Skoog, I, Guo, X, Schütze, M, Gustafson, D, Waern, M, et al. Alcoholic beverages and incidence of dementia: 34-year follow-up of the prospective population study of women in Goteborg. Am J Epidemiol. 2008;167:684-691.
100. Molero, AE, Pino-Ramirez, G, Maestre, GE. High prevalence of dementia in a Caribbean population. Neuroepidemiology. 2007;29:107-112.
101. Nabalamba, A, Patten, SB. Prevalence of mental disorders in a Canadian household population with dementia. Can J Neurol Sci. 2010;37:186-194.
102. Ng, TP, Leong, T, Chiam, PC, Kua, EH. Ethnic variations in dementia: the contributions of cardiovascular, psychosocial and neuropsychological factors. Dement Geriatr Cogn Disord. 2010;29:131-138.
103. Nunes, B, Silva, RD, Cruz, VT, Roriz, JM, Pais, J, Silva, MC. Prevalence and pattern of cognitive impairment in rural and urban populations from Northern Portugal. BMC Neurol. 2010;10:42.
104. Perkins, AJ, Hui, SL, Ogunniyi, A, Gureje, O, Baiyewu, O, Unverzagt, FW, et al. Risk of mortality for dementia in a developing country: the Yoruba in Nigeria. Int J Geriatr Psychiatry. 2002;17:566-573.
105. Plassman, BL, Langa, KM, Fisher, GG, Heeringa, SG, Weir, DR, Ofstedal, MB, et al. Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology. 2007;29:125-132.
106. Polvikoski, T, Sulkava, R, Myllykangas, L, Notkola, IL, Niinistö, L, Verkkoniemi, A, et al. Prevalence of Alzheimer’s disease in very elderly people: a prospective neuropathological study. Neurology. 2001;56:1690-1696.
107. Prince, M, Llibre Rodriguez, J, Noriega, L, Lopez, A, Acosta, D, Albanese, E, et al. The 10/66 Dementia Research Group’s fully operationalised DSM–IV dementia computerized diagnostic algorithm, compared with the 10/66 dementia algorithm and a clinician diagnosis: a population validity study. BMC Public Health. 2008;8:1-12.
108. Rahkonen, T, Eloniemi-Sulkava, U, Rissanen, S, Vatanen, A, Viramo, P, Sulkava, R. Dementia with Lewy bodies according to the consensus criteria in a general population aged 75 years or older. J Neurol Neurosurg Psychiatry. 2003;74:720-724.
109. Riedel-Heller, SG, Busse, A, Aurich, C, Matschinger, H, Angermeyer, MC. Prevalence of dementia according to DSM–III–R and ICD–10: results of the Leipzig Longitudinal Study of the Aged (LEILA75+) Part 1. Br J Psychiatry. 2001;179:250-254.
110. Riedel-Heller, SG, Schork, A, Matschinger, H, Angermeyer, MC. Recruitment procedures and their impact on the prevalence of dementia: results from the Leipzig Longitudinal Study of the Aged (LEILA75+). Neuroepidemiology. 2000;19:130-140.
111. Rockwood, K, Wentzel, C, Hachinski, V, Hogan, DB, MacKnight, C, McDowell, I. Prevalence and outcomes of vascular cognitive impairment. Vascular Cognitive Impairment Investigators of the Canadian Study of Health and Aging. Neurology. 2000;54:447-451.
112. Rosenblatt, A, Samus, QM, Steele, CD, Baker, AS, Harper, MG, Brandt, J, et al. The Maryland Assisted Living Study: prevalence, recognition, and treatment of dementia and other psychiatric disorders in the assisted living population of central Maryland. J Am Geriatr Soc. 2004;52:1618-1625.
113. Rovio, S, Kareholt, I, Helkala, EL, Viitanen, M, Winblad, B, Tuomilehto, J, et al. Leisure-time physical activity and the risk of dementia and Alzheimer’s disease. Lancet Neurol. 2005;4:705-711.
114. Sahadevan, S, Saw, SM, Gao, W, Tan, LC, Chin, JJ, Hong, CY, et al. Ethnic differences in Singapore’s dementia prevalence: the stroke, Parkinson’s disease, epilepsy, and dementia in Singapore study. J Am Geriatr Soc. 2008;56:2061-2068.
115. Sanderson, M, Benjamin, JT, Lane, MJ, Cornman, CB, Davis, DR. Application of capture–recapture methodology to estimate the prevalence of dementia in South Carolina. Ann Epidemiol. 2003;13:518-524.
116. Scazufca, M, Menezes, PR, Vallada, HP, Crepaldi, AL, Pastor-Valero, M, Coutinho, LM, et al. High prevalence of dementia among older adults from poor socioeconomic backgrounds in São Paulo, Brazil. Int Psychogeriatr. 2008;20:394-405.
117. Sekita, A, Ninomiya, T, Tanizaki, Y, Doi, Y, Hata, J, Yonemoto, K, et al. Trends in prevalence of Alzheimer’s disease and vascular dementia in a Japanese community: the Hisayama Study. Acta Psychiatr Scand. 2010;122:319-325.
118. Senanarong, V, Jamjumrus, P, Harnphadungkit, K, Vannasaeng, S, Udompunthurak, S, Prayoonwiwat, N, et al. Risk factors for dementia and impaired cognitive status in Thai elderly. J Med Assoc Thai. 2001;84:468-474.
119. Senanarong, V, Poungvarin, N, Sukhatunga, K, Prayoonwiwat, N, Chaisewikul, R, Petchurai, R, et al. Cognitive status in the community dwelling Thai elderly. J Med Assoc Thai. 2001;84:408-416.
120. Shaji, S, Bose, S, Verghese, A. Prevalence of dementia in an urban population in Kerala, India. Br J Psychiatry. 2005;187:90.
121. Silver, MH, Jilinskaia, E, Perls, TT. Cognitive functional status of age-confirmed centenarians in a population-based study. J Gerontology B Psychol Sci Soc Sci. 2001;56:P134-P140.
122. Sousa, RM, Ferri, CP, Acosta, D, Albanese, E, Guerra, M, Huang, Y, et al. Contribution of chronic diseases to disability in elderly people in countries with low and middle incomes: a 10/66 Dementia Research Group population-based survey. Lancet. 2009;374:1821-1830.
123. Spada, RS, Stella, G, Calabrese, S, Bosco, P, Anello, G, Guéant-Rodriguez, RM, et al. Prevalence of dementia in mountainous village of Sicily. J Neurol Sci. 2009;283:62-65.
124. Stevens, T, Livingston, G, Kitchen, G, Manela, M, Walker, Z, Katona, C. Islington study of dementia subtypes in the community. Br J Psychiatry. 2002;180:270-276.
125. Suh, GH, Kim, JK, Cho, MJ. Community study of dementia in the older Korean rural population. Aust N Z J Psychiatry. 2003;37:606-612.
126. van Exel, E, de Craen, AJM, Gussekloo, J, Houx, P, Bootsma-van der Wiel, A, Macfarlane, PW, et al. Association between high-density lipoprotein and cognitive impairment in the oldest old. Ann Neurol. 2002;51:716-721.
127. Vas, CJ, Pinto, C, Panikker, D, Noronha, S, Deshpande, N, Kulkarni, L, et al. Prevalence of dementia in an urban Indian population. Int Psychogeriatr. 2001;13:439-450.
128. von Heideken Wagert, P, Gustavsson, JM, Lundin-Olsson, L, Kallin, K, Nygren, B, Lundman, B, et al. Health status in the oldest old: age and sex differences in the Umea 85+ Study. Aging Clin Exp Res. 2006;18:116-126.
129. Wada-Isoe, K, Uemura, Y, Suto, Y, Doi, K, Imamura, K, Hayashi, A, et al. Prevalence of dementia in the rural island town of Ama-cho, Japan. Neuroepidemiology. 2009;32:101-106.
130. Wakutani, Y, Kusumi, M, Wada, K, Kawashima, M, Ishizaki, K, Mori, M, et al. Longitudinal changes in the prevalence of dementia in a Japanese rural area. Psychogeriatrics. 2007;7:150-154.
131. Wancata, J, Borjesson-Hanson, A, Ostling, S, Sjogren, K, Skoog, I. Diagnostic criteria influence dementia prevalence. Am J Geriatr Psychiatry. 2007;15:1034-1045.
132. Wangtongkum, S, Sucharitkul, P, Silprasert, N, Inthrachak, R. Prevalence of dementia among population age over 45 years in Chiang Mai, Thailand. J Med Assoc Thai. 2008;91:1685-1690.
133. Wertman, E, Brodsky, J, King, Y, Bentur, N, Chekhmir, S. An estimate of the prevalence of dementia among community-dwelling elderly in Israel. Dement Geriatr Cogn Disord. 2007;24:294-299.
134. Xu, W, Qiu, C, Gatz, M, Pedersen, NL, Johansson, B, Fratiglioni, L. Mid- and late-life diabetes in relation to the risk of dementia: a population-based twin study. Diabetes. 2009;58:71-77.
135. Yamada, T, Hattori, H, Miura, A, Tanabe, M, Yamori, Y. Prevalence of Alzheimer’s disease, vascular dementia and dementia with Lewy bodies in a Japanese population. Psychiatry Clin Neurosci. 2001;55:21-25.
136. Zhao, Q, Zhou, B, Ding, D, Guo, Q, Hong, Z. Prevalence, mortality, and predictive factors on survival of dementia in Shanghai, China. Alzheimer Dis Assoc Disord. 2010;24:151-158.
137. Zhou, DF, Wu, CS, Qi, H, Fan, JH, Sun, XD, Como, P, et al. Prevalence of dementia in rural China: impact of age, gender and education. Acta Neurol Scand. 2006;114:273-280.
138. Andreasen, N, Blennow, K, Sjodin, C, Winblad, B, Svardsudd, K. Prevalence and incidence of clinically diagnosed memory impairments in a geographically defined general population in Sweden. The Pitea Dementia Project. Neuroepidemiology. 1999;18:144-155.
139. Arai, A, Katsumata, Y, Konno, K, Tamashiro, H. Sociodemographic factors associated with incidence of dementia among senior citizens of a small town in Japan. Care Manag J. 2004;5:159-165.
140. Benito-Leon, J, Bermejo-Pareja, F, Vega, S, Louis, ED. Total daily sleep duration and the risk of dementia: a prospective population-based study. Eur J Neurol. 2009;16:990-997.
141. Bermejo-Pareja, F, Benito-Leon, J, Vega, S, Medrano, MJ, Roman, GC, Neurological Disorders Study Group in Central Spain. Incidence and subtypes of dementia in three elderly populations of central Spain. J Neurol Sci. 2008;264:63-72.
142. Cornelius, C, Fastbom, J, Winblad, B, Viitanen, M. Aspirin, NSAIDs, risk of dementia, and influence of the apolipoprotein E epsilon 4 allele in an elderly population. Neuroepidemiology. 2004;23:135-143.
143. Di Carlo, A, Baldereschi, M, Amaducci, L, Lepore, V, Bracco, L, Maggi, S, et al. Incidence of dementia, Alzheimer’s disease, and vascular dementia in Italy: the ILSA Study. J Am Geriatr Soc. 2002;50:41-48.
144. Edland, SD, Rocca, WA, Petersen, RC, Cha, RH, Kokmen, E. Dementia and Alzheimer disease incidence rates do not vary by sex in Rochester, Minn. Arch Neurol. 2002;59:1589-1593.
145. Fitzpatrick, AL, Kuller, LH, Ives, DG, Lopez, OL, Jagust, W, Breitner, JC, et al. Incidence and prevalence of dementia in the Cardiovascular Health Study. J Am Geriatr Soc. 2004;52:195-204.
146. Forti, P, Pisacane, N, Rietti, E, Lucicesare, A, Olivelli, V, Mariani, E, et al. Metabolic syndrome and risk of dementia in older adults. J Am Geriatr Soc. 2010;58:487-492.
147. Fuhrer, R, Dufouil, C, Dartigues, JF, PAQUID Study. Exploring sex differences in the relationship between depressive symptoms and dementia incidence: prospective results from the PAQUID Study. J Am Geriatr Soc. 2003;51:1055-1063.
148. Ganguli, M, Dodge, HH, Chen, P, Belle, S, DeKosky, ST. Ten-year incidence of dementia in a rural elderly US community population: the MoVIES Project. Neurology. 2000;54:1109-1116.
149. Garre-Olmo, J, Genis Batlle, D, del Mar Fernandez, M, Marquez Daniel, F, de Eugenio Huélamo, R, Casadevall, T, et al. Incidence and subtypes of early-onset dementia in a geographically defined general population. Neurology. 2010;75:1249-1255.
150. Hendrie, HC, Ogunniyi, A, Hall, KS, Baiyewu, O, Unverzagt, FW, Gureje, O, et al. Incidence of dementia and Alzheimer disease in 2 communities: Yoruba residing in Ibadan, Nigeria, and African Americans residing in Indianapolis, Indiana. JAMA. 2001;285:739-747.
151. Kawas, C, Gray, S, Brookmeyer, R, Fozard, J, Zonderman, A. Age-specific incidence rates of Alzheimer’s disease: the Baltimore Longitudinal Study of Aging. Neurology. 2000;54:2072-2077.
152. Knopman, DS, Petersen, RC, Cha, RH, Edland, SD, Rocca, WA. Incidence and causes of nondegenerative nonvascular dementia: a population-based study. Arch Neurol. 2006;63:218-221.
153. Knopman, DS, Petersen, RC, Edland, SD, Cha, RH, Rocca, WA. The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology. 2004;62:506-508.
154. Knopman, DS, Rocca, WA, Cha, RH, Edland, SD, Kokmen, E. Incidence of vascular dementia in Rochester, Minn, 1985-1989. Arch Neurol. 2002;59:1605-1610.
155. Knopman, DS, Rocca, WA, Cha, RH, Edland, SD, Kokmen, E. Survival study of vascular dementia in Rochester, Minnesota. Arch Neurol. 2003;60:85-90.
156. Kukull, WA, Higdon, R, Bowen, JD, McCormick, WC, Teri, L, Schellenberg, GD, et al. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol. 2002;59:1737-1746.
157. Kuller, LH, Lopez, OL, Jagust, WJ, Becker, JT, DeKosky, ST, Lyketsos, C, et al. Determinants of vascular dementia in the Cardiovascular Health Cognition Study. Neurology. 2005;64:1548-1552.
158. Larrieu, S, Letenneur, L, Helmer, C, Dartigues, JF, Barberger-Gateau, P. Nutritional factors and risk of incident dementia in the PAQUID longitudinal cohort. J Nutr Health Aging. 2004;8:150-154.
159. Lopez, OL, Kuller, LH, Becker, JT, Jagust, WJ, DeKosky, ST, Fitzpatrick, A, et al. Classification of vascular dementia in the Cardiovascular Health Study Cognition Study. Neurology. 2005;64:1539-1547.
160. Lopez-Pousa, S, Vilalta-Franch, J, Llinas-Regla, J, Garre-Olmo, J, Roman, GC. Incidence of dementia in a rural community in Spain: the Girona cohort study. Neuroepidemiology. 2004;23:170-177.
161. Matsui, Y, Tanizaki, Y, Arima, H, Yonemoto, K, Doi, Y, Ninomiya, T, et al. Incidence and survival of dementia in a general population of Japanese elderly: the Hisayama study. J Neurol Neurosurg Psychiatry. 2009;80:366-370.
162. Matthews, F, Brayne, C, Medical Research Council Cognitive Function and Ageing Study Investigators. The incidence of dementia in England and Wales: findings from the five identical sites of the MRC CFA Study. PLoS Med. 2005;2:e193. Erratum appears in PLoS Med. 2005 Oct2(10):e389.
163. McDowell, I, Xi, G, Lindsay, J, Tierney, M. Mapping the connections between education and dementia. J Clin Exp Neuropsychol. 2007;29:127-141.
164. Mercy, L, Hodges, JR, Dawson, K, Barker, RA, Brayne, C. Incidence of early-onset dementias in Cambridgeshire, United Kingdom. Neurology. 2008;71:1496-1499.
165. Miech, RA, Breitner, JCS, Zandi, PP, Khachaturian, AS, Anthony, JC, Mayer, L. Incidence of AD may decline in the early 90s for men, later for women: the Cache County study. Neurology. 2002;58:209-218.
166. Nitrini, R, Caramelli, P, Herrera, E Jr., Bahia, VS, Caixeta, LF, Radanovic, M, et al. Incidence of dementia in a community-dwelling Brazilian population. Alzheimer Dis Assoc Disord. 2004;18:241-246.
167. Piguet, O, Grayson, DA, Creasey, H, Bennett, HP, Brooks, WS, Waite, LM, et al. Vascular risk factors, cognition and dementia incidence over 6 years in the Sydney Older Persons Study. Neuroepidemiology. 2003;22:165-171.
168. Polvikoski, T, Sulkava, R, Rastas, S, Sutela, A, Niinistö, L, Notkola, IL, et al. Incidence of dementia in very elderly individuals: a clinical, neuropathological and molecular genetic study. Neuroepidemiology. 2006;26:76-82.
169. Ravaglia, G, Forti, P, Lucicesare, A, Pisacane, N, Rietti, E, Bianchin, M, et al. Physical activity and dementia risk in the elderly: findings from a prospective Italian study. Neurology. 2008;70:1786-1794.
170. Ravaglia, G, Forti, P, Maioli, F, Martelli, M, Servadei, L, Brunetti, N, et al. Incidence and etiology of dementia in a large elderly Italian population. Neurology. 2005;64:1525-1530.
171. Ravaglia, G, Forti, P, Maioli, F, Montesi, F, Rietti, E, Pisacane, N, et al. Risk factors for dementia: data from the Conselice study of brain aging. Arch Gerontol Geriatr. 2007;44(Suppl 1):311-320.
172. Riedel-Heller, SG, Busse, A, Aurich, C, Matschinger, H, Angermeyer, MC. Incidence of dementia according to DSM–III–R and ICD–10: results of the Leipzig Longitudinal Study of the Aged (LEILA75+), Part 2. Br J Psychiatry. 2001;179:255-260.
173. Ruitenberg, A, Ott, A, van Swieten, JC, Hofman, A, Breteler, MM. Incidence of dementia: does gender make a difference? Neurobiol Aging. 2001;22:575-580.
174. Samieri, C, Feart, C, Letenneur, L, Dartigues, JF, Pérès, K, Auriacombe, S, et al. Low plasma eicosapentaenoic acid and depressive symptomatology are independent predictors of dementia risk. Am J Clin Nutr. 2008;88:714-721.
175. Seshadri, S, Beiser, A, Selhub, J, Jacques, PF, Rosenberg, IH, D’Agostino, RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s Disease. New Engl J Med. 2002;346:476-483.
176. Simons, LA, Simons, J, McCallum, J, Friedlander, Y. Lifestyle factors and risk of dementia: Dubbo Study of the elderly. Med J Aust. 2006;184:68-70.
177. Tyas, SL, Tate, RB, Wooldrage, K, Manfreda, J, Strain, LA. Estimating the incidence of dementia: the impact of adjusting for subject attrition using health care utilization data. Ann Epidemiol. 2006;16:477-484.
178. Vermeer, SE, Prins, ND, den Heijer, T, Hofman, A, Koudstaal, PJ, Breteler, MM. Silent brain infarcts and the risk of dementia and cognitive decline. New Engl J Med. 2003;348:1215-1222.
179. Waite, LM, Broe, GA, Grayson, DA, Creasey, H. The incidence of dementia in an Australian community population: the Sydney Older Persons Study. Int J Geriatr Psychiatry. 2001;16:680-689.
180. Lopez, OL, Kuller, LH, Fitzpatrick, A, Ives, D, Becker, JT, Beauchamp, N. Evaluation of dementia in the cardiovascular health cognition study. Neuroepidemiology. 2003;22:1-12.
181. Meguro, K, Ishii, H, Kasuya, M, Akanuma, K, Meguro, M, Kasai, M, et al. Incidence of dementia and associated risk factors in Japan: The Osaki–Tajiri Project. J Neurol Sci. 2007;260:175-182.
182. Phung, TKT, Waltoft, BL, Kessing, LV, Mortensen, PB, Waldemar, G. Time trend in diagnosing dementia in secondary care. Dement Geriatr Cogn Disord. 2010;29:146-153.
183. Zuliani, G, Cavalieri, M, Galvani, M, Volpato, S, Cherubini, A, Bandinelli, S, et al. Relationship between low levels of high-density lipoprotein cholesterol and dementia in the elderly: the InChianti study. J Gerontol A Biol Sci Med Sci. 2010;65:559-564.
184. Hurd, MD, Martorell, P, Langa, K. Future monetary costs of dementia in the United States under alternative dementia prevalence scenarios. J Popul Ageing. 2015;8:101-112.
185. Prince, M, Bryce, R, Albanese, E, Wimo, A, Ribeiro, W, Ferri, CP. The global prevalence of dementia: a systematic review and meta-analysis. Alzheimers Dement. 2013;9(63-75):e62.
186. Catindig, JA, Venketasubramanian, N, Ikram, MK, Chen, C. Epidemiology of dementia in Asia: insights on prevalence, trends and novel risk factors. J Neurol Sci. 2012;321:11-16.
187. Dong, MJ, Peng, B, Lin, XT, Zhao, J, Zhou, YR, Wang, RH. The prevalence of dementia in the People’s Republic of China: a systematic analysis of 1980-2004 studies. Age Ageing. 2007;36:619-624.
188. Zhang, Y, Xu, Y, Nie, H, Lei, T, Wu, Y, Zhang, L, et al. Prevalence of dementia and major dementia subtypes in the Chinese populations: a meta-analysis of dementia prevalence surveys, 1980-2010. J Clin Neurosci. 2012;19:1333-1337.
189. Erkinjuntti, T, Ostbye, T, Steenhuis, R, Hachinski, V. The effect of different diagnostic criteria on the prevalence of dementia. N Engl J Med. 1997;337:1667-1674.
190. Pringsheim, T, Jette, N, Frolkis, A, Steeves, TD. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29:1583-1590.
191. Pringsheim, T, Wiltshire, K, Day, L, Dykeman, J, Steeves, T, Jette, N. The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord. 2012;27:1083-1091.