Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T13:02:38.137Z Has data issue: false hasContentIssue false

Neuropsychiatric Behaviors in the MPTP Marmoset Model of Parkinson’s Disease

Published online by Cambridge University Press:  02 December 2014

Susan H. Fox*
Affiliation:
Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada Toronto Western Research Institute, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
Naomi Visanji
Affiliation:
Toronto Western Research Institute, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
Gaby Reyes
Affiliation:
Toronto Western Research Institute, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
Philippe Huot
Affiliation:
Toronto Western Research Institute, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
Jordi Gomez-Ramirez
Affiliation:
Toronto Western Research Institute, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
Tom Johnston
Affiliation:
Toronto Western Research Institute, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
Jonathan M. Brotchie
Affiliation:
Toronto Western Research Institute, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
*
Division of Neurology, Movement Disorders Clinic MCL7-421, Toronto Western Hospital, 399, Bathurst St, Toronto, Ontario, M5V 2S8, Canada.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objectives:

Neuropsychiatric symptoms are increasingly recognised as a significant problem in patients with Parkinson's disease (PD). These symptoms may be due to ‘sensitisation’ following repeated levodopa treatment or a direct effect of dopamine on the disease state. The levodopa-treated MPTP-lesioned marmoset was used as a model of neuropsychiatric symptoms in PD patients. Here we compare the time course of levodopa-induced motor fluctuations and neuropsychiatric-like behaviors to determine the relationship between duration of treatment and onset of symptoms.

Methods:

Marmosets were administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (2.0 mg/kg s.c.) for five days, resulting in stable parkinsonism. Levodopa (15 mg/kg and benserazide, 3.75 mg/kg) p.o. b.i.d. was administered for 30 days. Animals were evaluated for parkinsonian disability, dyskinesia and on-time (motor fluctuations) and neuropsychiatric-like behaviors on Day 0 (prior to levodopa) and on Days 1, 7, 13, 27 and 30 of treatment using post hoc DVD analysis by a trained rater, blind to the treatment day.

Results:

The neuropsychiatric-like behavior rating scale demonstrated high interrater reliability between three trained raters of differing professional backgrounds. As anticipated, animals exhibited a progressive increase in levodopa-induced motor fluctuations, dyskinesia and wearing-off, that correlated with the duration of levodopa therapy. In contrast, levodopa-induced neuropsychiatric-like behaviors were present on Day 1 of levodopa treatment and their severity did not correlate with duration of treatment.

Conclusions:

The data suggest that neuropsychiatric disorders in PD are more likely an interaction between levodopa and the disease state than a consequence of sensitisation to repeated dopaminergic therapy.

Résumé:

RÉSUMÉ:Objectifs:

Il est de plus en plus accepté que les symptômes neuropsychiatriques constituent un problème important chez les patients atteints de la maladie de Parkinson (MP). Ces symptômes pourraient être dus à une « sensibilisation » suite au traitement par la lévodopa ou à un effet direct de la dopamine sur la maladie. Le ouistiti, qui a subi une lésion par la MPTP et qui a été traité par la lévodopa, a été utilisé comme modèle des symptômes neuropsychiatriques observés chez les patients atteints de la MP. Nous avons comparé l’évolution dans le temps des fluctuations motrices induites par la lévodopa et des comportements d’aspect neuropsychiatrique pour déterminer la relation entre la durée du traitement et le début des symptômes.

Méthodes:

De la 1-méthyl-4-phényl-1,2,3,6-tétrahydropyridine (2,0 mg/kg s.c.) a été administrée à des ouistitis pendant cinq jours pour induire un parkinsonisme stable. De la lévodopa (15 mg/kg) et du bensérazide (3,75 mg/kg) ont été administrés p.o. bid pendant 30 jours. Nous avons évalué l’invalidité parkinsonienne chez les animaux, les dyskinésies et les fluctuations motrices et les comportements d’aspect neuropsychiatrique au jour 0 (avant l’administration de lévodopa) et aux jours 1, 7, 13, 27 et 30 du traitement au moyen de l’analyse post hoc de DVD par un évaluateur entraîné, en aveugle quant au jour de traitement.

Résultats:

L’échelle d’évaluation des comportements d’aspect neuropsychiatrique a démontré une grande fiabilité inter-évaluateur entre trois évaluateurs entraînés possédant une formation professionnelle différente. Tel que prévu, les animaux présentaient une augmentation progressive des fluctuations motrices induites par la lévodopa, des dyskinésie et de l’épuisement de l’effet en fin de dose qui étaient corrélés à la durée du traitement par la lévodopa. Par contre, les comportements d’aspect neuropsychiatrique étaient présents le premier jour du traitement par la lévodopa et leur sévérité n’était pas corrélée à la durée du traitement.

Conclusions:

Selon nos données, les troubles neuropsychiatriques dans la MP sont vraisemblablement dus à une interaction entre la lévodopa et la maladie et ne sont pas une conséquence de la sensibilisation à l’administration répétée de lévodopa.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2010

References

1. Schrag, A. Psychiatric aspects of Parkinson’s disease-an update. J Neurol. 2004;251(7):795804.Google ScholarPubMed
2. Weintraub, D, Stern, MB. Psychiatric complications in Parkinson disease. Am J Geriatr. Psychiatry. 2005;13(10):84451.CrossRefGoogle ScholarPubMed
3. Ravina, B, Marder, K, Fernandez, HH, Friedman, JH, McDonald, W, Murphy, D, et al. Diagnostic criteria for psychosis in Parkinson’s disease: report of an NINDS, NIMH work group. Mov Disord. 2007;22(8):10618.CrossRefGoogle ScholarPubMed
4. Voon, V, Fox, SH. Medication-related impulse control and repetitive behaviors in Parkinson disease. Arch Neurol. 2007;64(8): 108996.CrossRefGoogle ScholarPubMed
5. Lawrence, AD, Evans, AH, Lees, AJ. Compulsive use of dopamine replacement therapy in Parkinson’s disease: reward systems gone awry? Lancet Neurol. 2003;2(10):595604.CrossRefGoogle ScholarPubMed
6. Dodd, ML, Klos, KJ, Bower, JH, Geda, YE, Josephs, KA, Ahlskog, JE. Pathological gambling caused by drugs used to treat Parkinson disease. Arch Neurol. 2005;62(9):137781.CrossRefGoogle ScholarPubMed
7. Nirenberg, MJ, Waters, C. Compulsive eating and weight gain related to dopamine agonist use. Mov Disord. 2006;21(4):5249.CrossRefGoogle ScholarPubMed
8. Gallagher, DA, O’Sullivan, SS, Evans, AH, Lees, AJ, Schrag, A. Pathological gambling in Parkinson’s disease: risk factors and differences from dopamine dysregulation. An analysis of published case series. Mov Disord. 2007;22(12):175763.CrossRefGoogle ScholarPubMed
9. Evans, AH, Katzenschlager, R, Paviour, D, O’Sullivan, JD, Appel, S, Lawrence, AD, et al. Punding in Parkinson’s disease: its relation to the dopamine dysregulation syndrome. Mov Disord. 2004;19(4):397405.CrossRefGoogle Scholar
10. Kurlan, R. Disabling repetitive behaviors in Parkinson’s disease. Mov Disord. 2004;19(4):4337.CrossRefGoogle ScholarPubMed
11. Galpern, WR, Stacy, M. Management of impulse control disorders in Parkinson’s disease. Curr Treat Options Neurol. 2007;9(3): 18997.CrossRefGoogle ScholarPubMed
12. Kimber, TE, Thompson, PD, Kiley, MA. Resolution of dopamine dysregulation syndrome following cessation of dopamine agonist therapy in Parkinson’s disease. J Clin Neurosci. 2008;15(2):2058.CrossRefGoogle ScholarPubMed
13. Factor, SA, Feustel, PJ, Friedman, JH, Comella, CL, Goetz, CG, Kurlan, R, et al. Longitudinal outcome of Parkinson’s disease patients with psychosis. Neurology. 2003;60(11):175661.CrossRefGoogle ScholarPubMed
14. Rajput, AH, Fenton, ME, Birdi, S, Macaulay, R, George, D, Rozdilsky, B, et al. Clinical-pathological study of levodopa complications. Mov Disord. 2002;17(2):28996.CrossRefGoogle ScholarPubMed
15. Rascol, O, Brooks, DJ, Korczyn, AD, De Deyn, PP, Clarke, CE, Lang, AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med. 2000;342(20):148491.CrossRefGoogle ScholarPubMed
16. Visanji, NP, Gomez-Ramirez, J, Johnston, TH, Pires, D, Voon, V, Brotchie, JM, et al. Pharmacological characterization of psychosis-like behavior in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord. 2006;21(11):187991.CrossRefGoogle ScholarPubMed
17. Fox, SH, Visanji, NP, Johnston, TH, Gomez-Ramirez, J, Voon, V, Brotchie, JM. Dopamine receptor agonists and levodopa and inducing psychosis-like behavior in the MPTP primate model of Parkinson disease. Arch Neurol. 2006;63(9):13434.CrossRefGoogle ScholarPubMed
18. Scraggs, PR, Ridley, RM. Behavioural effects of amphetamine in a small primate: relative potencies of the d- and l-isomers. Psychopharmacology (Berl). 1978;59(3):2435.CrossRefGoogle Scholar
19. Castner, SA, Goldman-Rakic, PS. Long-lasting psychotomimetic consequences of repeated low-dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacology. 1999;20(1):1028.CrossRefGoogle ScholarPubMed
20. Pearce, RK, Jackson, M, Smith, L, Jenner, P, Marsden, CD. Chronic L-DOPA administration induces dyskinesias in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated common marmoset (Callithrix Jacchus). Mov Disord. 1995;10(6):73140.CrossRefGoogle ScholarPubMed
21. Fox, SH, Henry, B, Hill, M, Crossman, A, Brotchie, J. Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord. 2002;17(6):11807.CrossRefGoogle ScholarPubMed
22. Jenner, P, Rupniak, NM, Rose, S, Kelly, E, Kilpatrick, G, Lees, A, et al. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci Lett. 1984;50(1-3):8590.CrossRefGoogle Scholar
23. Henry, B, Fox, SH, Crossman, AR, Brotchie, JM. Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Exp Neurol. 2001;171(1):13946.CrossRefGoogle ScholarPubMed
24. Segal, DS, Weinberger, SB, Cahill, J, McCunney, SJ. Multiple daily amphetamine administration: behavioral and neurochemical alterations. Science. 1980;207(4433):9057.CrossRefGoogle ScholarPubMed
25. Robinson, TE, Berridge, KC. Incentive-sensitization and addiction. Addiction. 2001;96(1):10314.CrossRefGoogle ScholarPubMed
26. Schmidt, WJ, Beninger, RJ. Behavioural sensitization in addiction, schizophrenia, Parkinson’s disease and dyskinesia. Neurotox Res. 2006;10(2):1616.CrossRefGoogle ScholarPubMed
27. Kimura, M. Role of basal ganglia in behavioral learning. Neurosci Res. 1995;22(4):3538.CrossRefGoogle ScholarPubMed
28. Knowlton, BJ, Mangels, JA, Squire, LR. A neostriatal habit learning system in humans. Science. 1996;273(5280):1399402.CrossRefGoogle ScholarPubMed
29. Schultz, W. Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol. 1997;7(2):1917.CrossRefGoogle ScholarPubMed
30. Costall, B, Naylor, RJ, Cannon, JG, Lee, T. Differentiation of the dopamine mechanisms mediating stereotyped behaviour and hyperactivity in the nucleus accumbens and caudate-putamen. J Pharm Pharmacol. 1977;29(6):33742.Google ScholarPubMed
31. Graybiel, AM, Canales, JJ, Capper-Loup, C. Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis. Trends Neurosci. 2000;2323 Suppl 10:S717.CrossRefGoogle Scholar
32. Evans, AH, Pavese, N, Lawrence, AD, Tai, YF, Appel, S, Doder, M, et al. Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Ann Neurol. 2006;59(5):8528.CrossRefGoogle ScholarPubMed
33. Pierce, RC, Kalivas, PW. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev. 1997;25(2):192216.CrossRefGoogle ScholarPubMed
34. Bezard, E, Brotchie, JM, Gross, CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci. 2001;2(8):57788.CrossRefGoogle ScholarPubMed
35. Zhang, X, Lee, TH, Davidson, C, Lazarus, C, Wetsel, WC, Ellinwood, EH. Reversal of cocaine-induced behavioral sensitization and associated phosphorylation of the NR2B and GluR1 subunits of the NMDA and AMPA receptors. Neuropsychopharmacology. 2007;32(2):37787.CrossRefGoogle ScholarPubMed
36. Smiley, PL, Johnson, M, Bush, L, Gibb, JW, Hanson, GR. Effects of cocaine on extrapyramidal and limbic dynorphin systems. J Pharmacol Exp Ther. 1990;253(3):93843.Google ScholarPubMed
37. Duty, S, Henry, B, Crossman, AR, Brotchie, JM. Topographical organization of opioid peptide precursor gene expression following repeated apomorphine treatment in the 6-hydroxydopamine-lesioned rat. Exp Neurol. 1998;150(2): 22334.CrossRefGoogle ScholarPubMed
38. Henry, B, Duty, S, Fox, SH, Crossman, AR, Brotchie, JM. Increased striatal pre-proenkephalin B expression is associated with dyskinesia in Parkinson’s disease. Exp Neurol. 2003;183(2):45868.CrossRefGoogle ScholarPubMed
39. Crossman, AR. A hypothesis on the pathophysiological mechanisms that underlie levodopa- or dopamine agonist-induced dyskinesia in Parkinson’s disease: implications for future strategies in treatment. Mov Disord. 1990;5(2):1008.CrossRefGoogle ScholarPubMed
40. Alexander, GE, Crutcher, MD, DeLong, MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res. 1990;85:11946.CrossRefGoogle ScholarPubMed
41. Robinson, TE, Berridge, KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18(3):24791.CrossRefGoogle ScholarPubMed
42. Canales, JJ, Graybiel, AM. Patterns of gene expression and behavior induced by chronic dopamine treatments. Ann Neurol. 2000;47(4 Suppl 1):S539.Google ScholarPubMed