Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-xl52z Total loading time: 2.599 Render date: 2021-04-18T08:08:01.992Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Multimodal Evoked Potentials of Kennedy's Disease

Published online by Cambridge University Press:  02 December 2014

Tsu-Hsien Lai
Affiliation:
Department of Neurology, Taipei Veterans General Hospital
Bing-Wen Soong
Affiliation:
Department of Neurology, Taipei Veterans General Hospital
Jen-Tse Chen
Affiliation:
Department of Neurology, Taipei Veterans General Hospital
Yen-Yu Chen
Affiliation:
Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
Kuan-Lin Lai
Affiliation:
Department of Neurology, Taipei Veterans General Hospital
Zin-An Wu
Affiliation:
Department of Neurology, Taipei Veterans General Hospital
Kwong-Kum Liao
Affiliation:
Department of Neurology, Taipei Veterans General Hospital
Rights & Permissions[Opens in a new window]

Abstract

Background:

Kennedy's disease (KD) is an X-linked recessive polyglutamine disease. Traditionally, it is a lower motor neuron syndrome with additional features such as gynecomastia and tremor. Sensory symptoms are minimal if ever present. We used multimodal evoked potential (EPs) tests to study the distribution of the involvement of the disease.

Methods:

Visual, brainstem auditory, somatosensory and motor EPs were studied in six KD patients. All of them had typical presentations and had been proved genetically.

Results:

Abnormal findings were noted as follows: prolonged peak latencies of visual EPs, increased hearing threshold level, inconsistent brainstem auditory EPs, decreased amplitudes of cortical potentials of somatosensory EPs, and increased motor threshold to transcranial magnetic stimulation.

Conclusions:

Our multimodal EP studies showed that KD involved multiple levels of the nervous system. It implies the widespread effects of the mutant androgen receptors.

Résumé:

RÉSUMÉ:

Potentiels évoqués multimodaux dans la maladie de Kennedy.

Contexte:

La maladie de Kennedy (MK) est une maladie récessive à polyglutamines, liée au chromosome X. Il s'agit traditionnellement d'un syndrome du neurone moteur périphérique accompagné d'autres manifestations comme de la gynécomastie et du tremblement. Si des symptômes sensitifs sont présents, ils sont minimes. Nous avons utilisé les potentiels évoqués (PÉs) multimodaux pour étudier la distribution de l'atteinte dans cette maladie. Méthodes : Nous avons étudié les PÉs visuels, les PÉs auditifs du tronc cérébral, les PÉs somesthésiques et les PÉs moteurs chez six patients atteints de MK. Chez tous, le tableau était typique et la maladie avait été confirmée par un test génétique. Résultats : Les anomalies suivantes ont été constatées : des latences prolongées du pic des PÉs visuels, un seuil auditif plus élevé, des PÉs auditifs du tronc cérébral discordants, une amplitude diminuée des potentiels corticaux des PÉs somesthésiques et un seuil moteur plus élevé à la stimulation magnétique transcrânienne. Conclusions : Nos études des PÉs multimodaux démontre que plusieurs niveaux du système nerveux sont atteints dans la MK, ce qui témoigne des effets diffus des récepteurs androgéniques mutants.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2007

References

1. Harding, AE, Thomas, PK, Baraitser, M, Bradbury, PG, Morgan-Hughes, JA, Ponsford, JR. X-linked recessive bulbospinal neuronopathy: a report of ten cases. J Neurol Neurosurg Psychiatry. 1982;45(11):10129.CrossRefGoogle ScholarPubMed
2. LaSpada, AR, Roling, DB, Harding, AE, Warner, CL, Spiegel, R, Hausmanowa-Petrusewicz, I, et al. Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in x-linked spinal and bulbar muscular atrophy. Nat Genet. 1992;2(4):3014.CrossRefGoogle Scholar
3. Sperfeld, AD, Karitzky, J, Brummer, D, Schreiber, H, Haussler, J, Ludolph, AC, et al. X-linked bulbospinal neuronopathy: Kennedy disease. Arch Neurol. 2002;59(12):19216.CrossRefGoogle ScholarPubMed
4. Anannontsak, A, Massakulpan, P, Aksaranugraha, S, Phanthumchinda, K. Somatosensory evoked potentials in X-linked recessive bulbospinal neuronopathy: a case demonstration. Electromyogra Clin Neurophysiol. 1999;39(7):3936.Google ScholarPubMed
5. Antonini, G, Gragnani, F, Romaniello, A, Pennisi, EM, Morino, S, Ceschin, V, et al. Sensory involvement in spinal-bulbar muscular atrophy (Kennedy’s disease). Muscle Nerve. 2000;23(2):2528.3.0.CO;2-P>CrossRefGoogle Scholar
6. Kachi, T, Sobue, G, Sobue, I. Central motor and sensory conduction in X-linked recessive bulbospinal neuronopathy. J Neurol Neurosurg Psychiatry. 1992;55(5):3947.CrossRefGoogle ScholarPubMed
7. Polo, A, Teatini, F, D’Anna, S, Manganotti, P, Salviati, A, Dallapiccola, B, et al. Sensory involvement in X-linked spino-bulbar muscular atrophy (Kennedy’s disease): an electro-physiological study. J Neurol. 1996;243(5):38892.CrossRefGoogle Scholar
8. Celesia, GG, Brigell, MG. Recommended standards for pattern electroretinograms and visual evoked potentials. Electroenceph Clin Neurophysiol Suppl. 1999;52:5367.Google ScholarPubMed
9. Pratt, H, Aminoff, MR, Nuwer, MR, Starr, A. Short-latency auditory evoked potentials. Electroenceph Clin Neurophysiol Suppl. 1999;52:6978.Google ScholarPubMed
10. Mauguière, F, Allison, T, Babiloni, C, Buchner, H, Eisen, AA, Goodin, SJ, et al. Somatosensory evoked potentials. Electroenceph Clin Neurophysiol Suppl. 1999;52:7990.Google ScholarPubMed
11. Rothwell, JC, Hallett, M, ÄA, Berardelli, Eisen, A, Rossini, PM, Paulus, W. Magnetic stimulation: motor evoked potentials. Electroenceph Clin Neurophysiol. 1999;S52:97103.Google Scholar
12. Gelinas, D, Callard, GV. Immunolocalization of aromatase- and androgen receptor-positive neurons in the goldfish brain. Gen Comp Endocrinol. 1997;106(2):15568.CrossRefGoogle ScholarPubMed
13. Adachi, H, Katsuno, M, Minamiyama, M, Waza, M, Sang, C, Nakagomi, Y, et al. Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients. Brain. 2005;128(Pt 3):65970.CrossRefGoogle ScholarPubMed
14. Agapova, OA, Kaufman, PL, Hernandez, MR. Androgen receptor and NFkB expression in human normal and glaucomatous optic nerve head astrocytes in vitro and in experimental glaucoma. Exp Eye Res. 2006;82(6):10539.CrossRefGoogle ScholarPubMed
15. Nunez, JL, Huppenbauer, CB, McAbee, MD, Juraska, JM, DonCarlos, LL. Androgen receptor expression in the developing male and female rat visual and prefrontal cortex. J Neurobiol. 2003;56(3):293302.CrossRefGoogle ScholarPubMed
16. Cheliout-Heraut, F, Barois, A, Urtizberea, A, Viollet, L, Estournet-Mathiaud, B. Evoked potentials in spinal muscular atrophy. J Child Neurol. 2003;18(6):38390.CrossRefGoogle ScholarPubMed
17. Simerly, RB, Chang, C, Muramatsu, M, Swanson, LW. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol. 1990;294(1):7695.CrossRefGoogle Scholar
18. Buecking, A, Pfister, R. Sensory ataxia as the initial clinical symptom in X-linked recessive bulbospinal neuronopathy. J Neurol Neurosurg Psychiatry. 2000;69(2):277.CrossRefGoogle ScholarPubMed
19. Li, M, Sobue, G, Doyu, M, Mukai, E, Hasizume, Y, Mitsuma, T. Primary sensory neurons in X-linked recessive bulbospinal neuropathy: histopathology and androgen receptor gene expression. Muscle Nerve. 1995;18(3):3018.CrossRefGoogle ScholarPubMed
20. Attarian, S, Azulay, J-Ph, Lardillier, D, Verschueren, A, Pouget, J. Transcranial magnetic stimulation in lower motor neuron disease. Clin Neurophysiol. 2005;116(1):3542.CrossRefGoogle Scholar
21. Sobue, G, Hashizume, Y, Mukai, E, Hirayama, M, Mitsuma, T, Takahashi, A. X-linked recessive bulbospinal neuronopathy: a clinical pathological study. Brain. 1989;112(Pt 1):20932.CrossRefGoogle Scholar
22. Nagashima, T, Seko, K, Hirose, K, Mannen, T, Yoshimura, S, Arima, R, et al. Familial bulbo-spinal muscular atrophy associated with testicular atrophy and sensory neuropathy. J Neurol Sci. 1988;87(2-3):14152.CrossRefGoogle ScholarPubMed
23. Shaw, PJ, Thagesen, H, Tomkins, J, Slade, JY, Usher, P, Jackson, A, et al. Kennedy’s disease: unusual molecular pathologic and clinical features. Neurology. 1998;51(1):2525.CrossRefGoogle ScholarPubMed
24. Pachatz, C, Terracciano, C, Desiato, MT, Orlacchio, A, Mori, F, Rocchi, C, et al. Upper motor neuron involvement in X-linked recessive bulbospinal muscular atrophy. Clin Neurophysiol. 2007;118(2):2628.CrossRefGoogle ScholarPubMed
25. Karitzky, J, Block, W, Mellies, JK, Traber, F, Sperfeld, A, Schild, HH, et al. Proton magnetic resonance spectroscopy in Kennedy syndrome. Arch Neurol. 1999;56(12):146571.CrossRefGoogle ScholarPubMed
26. Kessler, H, Prudlo, J, Kraft, S, Supprian, T. Dementia of frontal lobe type in Kennedy’s disease. Amyotroph Lateral Scler Other Motor Neuron Disord. 2005;6(4):2503.CrossRefGoogle ScholarPubMed
27. Soragna, D, Messa, C, Mochi, M, Alfonsi, E, Manni, R, Galimberti, CA, et al. Dopaminergic pathways involvement in Kennedy’s disease: neurophysiological and [123I]ß-CIT SPECT findings. J Neurol. 2001;248(8):7102.CrossRefGoogle Scholar
28. Jones, SJ. Clinical applications of short-latency somatosensory evoked potentials. Ann N Y Acad Sci. 1982;388:36987.CrossRefGoogle ScholarPubMed
29. Halliday, AM, McDonald, WI, Mushin, J. Visual evoked response in diagnosis of multiple sclerosis. Br Med J. 1973;4(5893):6614.CrossRefGoogle ScholarPubMed
30. Pierelli, F, Garrubba, C, Tilia, G, Parisi, L, Fattapposta, F, Pozzessere, G, et al. Multimodal evoked potentials in HIV-1-seropositive patients: relationship between the immune impairment and the neurophysiological function. Acta Neurol Scand. 1996;93(4):26671.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 107 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Multimodal Evoked Potentials of Kennedy's Disease
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Multimodal Evoked Potentials of Kennedy's Disease
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Multimodal Evoked Potentials of Kennedy's Disease
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *