Skip to main content Accessibility help
×
Home

MicroRNA Signatures in Neurological Disorders

Published online by Cambridge University Press:  02 December 2014

Gowhar Shafi
Affiliation:
Institute of Genetics & Hospital for Genetic Diseases, Begumpet Hyderabad-AP, India
Nishat Aliya
Affiliation:
Institute of Genetics & Hospital for Genetic Diseases, Begumpet Hyderabad-AP, India
Anjana Munshi
Affiliation:
Institute of Genetics & Hospital for Genetic Diseases, Begumpet Hyderabad-AP, India
Rights & Permissions[Opens in a new window]

Abstract

A class of small, non-coding transcripts called microRNAs (miRNAs) that play a major role in post-transcriptional gene regulation has recently emerged and become the focus of intense research. MicroRNAs are abundant in the nervous system, where they have key roles in development and are likely to be important mediators of plasticity. A highly conserved pathway of miRNA biogenesis is closely linked to the transport and translatability of mRNAs in neurons. MicroRNAs have been shown to modulate programmed cell death during development. Although there are nearly 750 known human miRNA sequences, each of only approximately 20-25 nucleotides in length that bind to multiple mRNA targets, the accurate prediction of miRNA targets seems to lie just beyond our grasp. Nevertheless, the identification of such targets promises to provide new insights into many facets of neuronal function. In this review, we briefly describe miRNA biogenesis and the principle approaches for studying the function of miRNAs and potential application of miRNAs as biomarkers, diagnostic targets, and potential therapeutic tools of human diseases in general and neurological disorders in particular.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2010

References

1. Ambros, V. MicroRNAs: tiny regulators with great potential. Cell. 2001;107:8236.CrossRefGoogle ScholarPubMed
2. Ambros, V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113(6):6736.CrossRefGoogle Scholar
3. Bartel, DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:28197.CrossRefGoogle ScholarPubMed
4. Carrington, JC, Ambros, V. Role of microRNAs in plant and animal development. Science. 2003;301:3368.CrossRefGoogle ScholarPubMed
5. Floyd, SK, Bowman, JL. Gene regulation: ancient microRNA target sequences in plants. Nature. 2004;428:4856.CrossRefGoogle ScholarPubMed
6. Ambros, V. The functions of animal microRNAs. Nature. 2004;431: 3505.CrossRefGoogle ScholarPubMed
7. Lee, RC, Feinbaum, RL, Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:84354.CrossRefGoogle Scholar
8. Berezikov, E, Guryev, V, van de Belt, J, Wienholds, E, Plasterk, RH, Cuppen, E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120:214.CrossRefGoogle ScholarPubMed
9. Lewis, BP, Burge, CB, Bartel, DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:1520.CrossRefGoogle ScholarPubMed
10. Markesbery, WR, Lovell, MA. Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment. Arch Neurol. 2007;64(7): 9546.CrossRefGoogle ScholarPubMed
11. Nelson, PT, Keller, JN. RNA in brain disease: no longer just “the messenger in the middle”. J Neuropathol Exp Neurol. 2007;6: 4618.CrossRefGoogle Scholar
12. Calin, GA, Liu, CG, Sevignani, C, Ferracin, M, Felli, N, Dumitru, CD, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA. 2004; 101:1175560.CrossRefGoogle ScholarPubMed
13. Kim, VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:37685.CrossRefGoogle ScholarPubMed
14. Han, J, Lee, Y, Yeom, KH, Nam, JW, Heo, I, Rhee, JK, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125:887901.CrossRefGoogle ScholarPubMed
15. Lund, E, Guttinger, S, Calado, A, Dahlberg, JE, Kutay, U. Nuclear export of microRNA precursors. Science. 2004;303:958.CrossRefGoogle ScholarPubMed
16. Bohnsack, MT, Czaplinski, K, Gorlich, D. Exportin 5 is a RanGTPdependent dsRNA-binding protein that mediates nuclear export of premiRNAs. RNA. 2004;10:18591.CrossRefGoogle Scholar
17. Yi, R, Qin, Y, Macara, IG, Cullen, BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17:301116.CrossRefGoogle ScholarPubMed
18. Chendrimada, TP, Gregory, RI, Kumaraswamy, E, Norman, J, Cooch, N, Nishikura, K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436:7404.CrossRefGoogle ScholarPubMed
19. Gregory, RI, Chendrimada, TP, Cooch, N, Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123:63140.CrossRefGoogle ScholarPubMed
20. Meister, G, Landthaler, M, Patkaniowska, A, Dorett, Y, Teng, G, Tuschl, T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15:18597.CrossRefGoogle ScholarPubMed
21. Hutvagner, G, Zamore, PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297:205660.CrossRefGoogle Scholar
22. Lagos-Quintana, M, Rauhut, R, Yalcin, A, Meyer, J, Lendeckel, W, Tuschl, T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:7359.CrossRefGoogle ScholarPubMed
23. Kim, J, Krichevsky, A, Grad, Y, Hayes, GD, Kosik, KS, Church, GM, et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci. 2004;101:3605.CrossRefGoogle ScholarPubMed
24. Nelson, PT, Hatzigeorgiou, AG, Mourelatos, Z. miRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA. 2004;10:38794.CrossRefGoogle Scholar
25. Giraldez, AJ, Cinalli, RM, Glasner, ME, Enright, AJ, Thomson, JM, Baskerville, S, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308:8338.CrossRefGoogle ScholarPubMed
26. Bernstein, E, Kim, SY, Carmell, MA, Murchison, EP, Alcorn, H, Li, MZ, et al. Dicer is essential for mouse development. Nat Genet. 2003;35:21517.CrossRefGoogle ScholarPubMed
27. Schaefer, D, O’Carroll, CL, Tan, D, Hillman, M, Sugimori, R, Llinas, P, et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med. 2007;204:15538.CrossRefGoogle ScholarPubMed
28. Kim, J, Inoue, K, Ishii, J, Vanti, WB, Voronov, SV, Murchison, E, et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 2007;317:12204.CrossRefGoogle ScholarPubMed
29. Bonhoeffer, T, Yuste, R. Spine motility: phenomenology, mechanisms, and function. Neuron. 2002;35:101927.CrossRefGoogle ScholarPubMed
30. Kloosterman, WP, Plasterk, RH. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006; 11:44150.CrossRefGoogle ScholarPubMed
31. Chen, K, Rajewsky, N. Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet. 2006;38: 14526.CrossRefGoogle ScholarPubMed
32. Abelson, JF, Kwan, KY, O’Roak, BJ, Baek, DY, Stillman, AA, Morgan, TM, et al. Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science. 2005;310:31720.CrossRefGoogle ScholarPubMed
33. Perkins, DO, Jeffries, CD, Jarskog, LF, Thomson, JM, Woods, K, Newman, MA, et al. MicroRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol. 2007;8:R27.CrossRefGoogle ScholarPubMed
34. Hansen, T, Olsen, L, Lindow, M, Jakobsen, KD, Ullum, H, Jonsson, E, et al. Brain expressed microRNAs implicated in schizophrenia etiology. PLoS ONE. 2007;2:e873.CrossRefGoogle ScholarPubMed
35. Bilen, J, Liu, N, Burnett, BG, Pittman, RN, Bonini, NM. MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol Cell. 2006;24:15763.CrossRefGoogle ScholarPubMed
36. Garzon, R, Fabbri, M, Cimmino, A, Calin, GA, Croce, CM. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12: 5807.CrossRefGoogle Scholar
37. Ciafre, SA, Galardi, S, Mangiola, A, Ferracin, M, Liu, CG, Sabatino, G, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005;334: 13518.CrossRefGoogle ScholarPubMed
38. Chan, JA, Krichevsky, AM, Kosik, KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:602933.CrossRefGoogle ScholarPubMed
39. Sathyan, P, Golden, HB, Miranda, RC. Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci. 2007;27:854657.CrossRefGoogle ScholarPubMed
40. Martin, KC, Kosik, KS. Synaptic tagging-who’s it? Nat Rev Neurosci. 2002;3:81320.CrossRefGoogle Scholar
41. Jeyaseelan, K, Lim, KY, Armugam, A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008;39:95966.CrossRefGoogle ScholarPubMed
42. Zhao, Y, Samal, E, Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436:21420.CrossRefGoogle ScholarPubMed
43. Johnston, RJ, Hobert, OA. MicroRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature. 2003;426:8459.CrossRefGoogle ScholarPubMed
44. Chang, S, Johnston, RJ, Frokjaer-Jensen, C, Lockery, S, Hobert, O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature. 2004;430: 7859.CrossRefGoogle ScholarPubMed
45. Vo, N, Klein, ME, Varlamova, O, Keller, DM, Yamamoto, T, Goodman, RH, et al. cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA. 2005;102:1642631.CrossRefGoogle ScholarPubMed
46. Krichevsky, AM, King, KS, Donahue, CP, Khrapko, K, Kosik, KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA. 2003;9:127481.CrossRefGoogle ScholarPubMed
47. Jin, P, Alisch, RS, Warren, ST. RNA and microRNAs in fragile X mental retardation. Nat Cell Biol. 2004;6:104853.CrossRefGoogle ScholarPubMed
48. Sempere, LF, Freemantle, S, Pitha-Rowe, I, Moss, E, Dmitrovsky, E, Ambros, V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004;5:R13.CrossRefGoogle ScholarPubMed
49. Cheng, LC, Tavazoie, M, Doetsch, F. Stem cells: from epigenetics to microRNAs. Neuron. 2005;46:3637.CrossRefGoogle ScholarPubMed
50. Kosik, KS, Krichevsky, AM. The elegance of the microRNAs: a neuronal perspective. Neuron. 2005;47:77982.CrossRefGoogle ScholarPubMed
51. Smirnova, L, Grafe, A, Seiler, A, Schumacher, S, Nitsch, R, Wulczyn, FG. Regulation of miRNA expression during neural cell specification. Eur J Neurosci. 2005;21:146977.CrossRefGoogle ScholarPubMed
52. Conaco, C, Otto, S, Han, JJ, Mandel, G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA. 2006;103:24227.CrossRefGoogle Scholar
53. Schratt, GM, Tuebing, F, Nigh, EA, Kane, CG, Sabatini, ME, Kiebler, M, et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439:2839.CrossRefGoogle ScholarPubMed
54. Schaeffer, C, Beaulande, M, Ehresmann, C, Ehresmann, B, Moine, H. The RNA binding protein FMRP: new connections and missing links. Biol Cell. 2003;95:2218.CrossRefGoogle ScholarPubMed
55. Lugli, G, Larson, J, Martone, ME, Jones, Y, Smalheiser, NR. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem. 2005;94:896905.CrossRefGoogle Scholar
56. Ashraf, SI, McLoon, AL, Sclarsic, SM, Kunes, S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell. 2006;124:191205.CrossRefGoogle ScholarPubMed
57. John, B, Enright, AJ, Aravin, A, Tuschl, T, Sander, C, Marks, DS. Human microRNA targets. PLoS Biol. 2004;2:e363.CrossRefGoogle ScholarPubMed
58. Krützfeldt, J, Poy, MN, Stoffel, M. Strategies to determine the biological function of microRNAs. Nat Genet. 2006;38:S14.CrossRefGoogle ScholarPubMed
59. Baskerville, S, Bartel, DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11:2417.CrossRefGoogle ScholarPubMed
60. Liu, J, Michelle, AC, Fabiola, VR, Carolyn, GM, Michael, JT, Ji-Joon, S, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Sci. 2004;305:143741.CrossRefGoogle ScholarPubMed
61. Wang, H, Ach, RA, Curry, B. Direct and sensitive miRNA profiling from low-input total RNA. RNA. 2007;13:1519.CrossRefGoogle ScholarPubMed
62. Schmittgen, TD, Jiang, JM, Liu, Q, Yang, LQ. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res. 2004;32:e48.CrossRefGoogle ScholarPubMed
63. Vidal, L, Blagden, S, Attard, G, de Bono, J. Making sense of antisense. Eur J Cancer. 2005;41:281218.CrossRefGoogle ScholarPubMed
64. Jackson, AL, Burchard, J, Schelter, J, Chau, BN, Cleary, M, Lim, L, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12: 117987.CrossRefGoogle ScholarPubMed
65. Birmingham, A, Anderson, EM, Reynolds, A, Ilsley-Tyree, D, Leake, D, Edorov, Y, et al. 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods. 2006;3: 199204.CrossRefGoogle Scholar
66. Fedorov, Y, Anderson, EM, Birmingham, A, Reynolds, A, Karpilow, J, Obinson, K, et al. A. Off-target effects by siRNA can induce toxic phenotype. RNA. 2006;12:118896.CrossRefGoogle ScholarPubMed
67. Grimm, D, Streetz, KL, Jopling, CL, Storm, TA, Pandey, K, Davis, CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441: 53741.CrossRefGoogle ScholarPubMed
68. Soifer, HS, Rossi, JJ, Saetrom, P. MicroRNAs in disease and potential therapeutic applications. Mol Ther. 2007;15(12):20709.CrossRefGoogle ScholarPubMed
69. Davis, S, Lollo, B, Freier, S, Esau, C. Improved targeting of miRNA with antisense oligonucleotides. Nucl Acids Res. 2006;34: 2294304.CrossRefGoogle ScholarPubMed
70. Wurdinger, T, Costa, FF. Molecular therapy in the microRNA era. Pharmacogenomics J. 2007;7:297304.CrossRefGoogle ScholarPubMed
71. Meister, G, Landthaler, M, Dorsett, Y, Tuschl, T. Sequence-specific inhibition of microRNA and siRNA-induced RNA silencing. RNA. 2004;10:54450.CrossRefGoogle ScholarPubMed
72. Hutvagner, G, Simard, MJ, Mello, CC, Zamore, PD. Sequencespecific inhibition of small RNA function. PLoS Biol. 2004; 2:E98.CrossRefGoogle Scholar
73. Boutla, A, Delidakis, C, Tabler, M. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucl Acids Res. 2003;31:497380.CrossRefGoogle ScholarPubMed
74. Orom, UA, Kauppinen, S, Lund, AH. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene. 2006;372:13741.CrossRefGoogle ScholarPubMed
75. Leaman, D, Chen, PY, Fak, J, Yalcin, A, Pearce, M, Unnerstall, U. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell. 2005; 121:1097108.CrossRefGoogle ScholarPubMed
76. Esau, C, Davis, S, Murray, SF, Yu, XX, Pandey, SK, Pear, M. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:8798.CrossRefGoogle ScholarPubMed
77. Krutzfeldt, J, Kuwajima, S, Braich, R, Rajeev, KG, Pena, J, Tuschl, T, et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucl Acids Res. 2007; 35:288592.CrossRefGoogle ScholarPubMed
78. Rodriguez-Lebron, E, Paulson, HL. Allele-specific RNAinterference for neurological disease. Gene Ther. 2006;13:57681.CrossRefGoogle Scholar
79. Houbaviy, HB, Murray, MF, Sharp, PA. Embryonic stem cell-specific microRNAs. Dev Cell. 2003;5:3518.CrossRefGoogle ScholarPubMed
80. Suh, MR, Lee, Y, Kim, JY, Kim, SK, Moon, SH, Lee, JY, et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004;270:48898.CrossRefGoogle ScholarPubMed
81. Forstemann, K, Tomari, Y, Du, TT, Vagin, VV, Denli, AM, Bratu, DP, et al. Normal microRNA maturation and germline stem cell maintenance requires loquacious, a double-stranded RNA binding domain protein. Plos Biol. 2005;3:1187201.CrossRefGoogle Scholar
82. Hatfield, SD, Shcherbata, HR, Fischer, KA, Nakahara, K, Carthew, RW, Ruohola-Baker, H. Stem cell division is regulated by the microRNA pathway. Nature. 2005;435:9748.CrossRefGoogle ScholarPubMed
83. Kanellopoulou, C, Muljo, SA, Kung, AL, Ganesan, S, Drapkin, R, Jenuwein, T, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 2005;19:489501.CrossRefGoogle ScholarPubMed
84. Lancman, JJ, Caruccio, NC, Harfe, BD, Pasquinelli, AE, Schageman, JJ, Pertsemlidis, A, et al. Analysis of the regulation of lin-41 during chick and mouse limb development. Dev Dyn. 2005;234: 94860.CrossRefGoogle ScholarPubMed
85. Lee, YS, Kim, HK, Chung, S, Kim, KS, Dutta, A. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the downregulation of putative targets during differentiation. J Biol Chem. 2005;280:1663541.CrossRefGoogle Scholar
86. Murchison, EP, Partridge, JF, Tam, OH, Cheloufi, S, Hannon, GJ. Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA. 2005;102:1213540.CrossRefGoogle ScholarPubMed
87. Krichevsky, AM, King, KS, Donahue, CP, Khrapko, K, Kosik, KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA. 2003;9:127481.CrossRefGoogle ScholarPubMed
88. Miska, EA, Alvarez-Saavedra, E, Townsend, M, Yoshii, A, Sestan, N, Rakic, P, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 2004;5:R68.CrossRefGoogle ScholarPubMed
89. Rogelj, B, Giese, KP. Expression and function of brain specific small RNAs. Rev Neurosci. 2004;15:18598.CrossRefGoogle ScholarPubMed
90. Giraldez, AJ, Cinalli, RM, Glasner, ME, Enright, AJ, Thomson, JM, Baskerville, S, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308:8338.CrossRefGoogle ScholarPubMed
91. Rogaev, EI. Small RNAs in human brain development and disorders. Biochemistry(Mos). 2005;70:14047.Google ScholarPubMed
92. Rowan, A. Development—MicroRNAs and brain morphogenesis. Nature Rev Neurosci. 2005;6:499.CrossRefGoogle Scholar
93. Wu, LG, Belasco, JG. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol. 2005;25:9198208.CrossRefGoogle ScholarPubMed
94. Schratt, GM, Tuebing, F, Nigh, EA, Kane, CG, Sabatini, ME, Kiebler, M, et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439:2839.CrossRefGoogle ScholarPubMed
95. Kloosterman, WP, Wienholds, E, Ketting, RF, Plasterk, RHA. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res. 2004;32:628491.CrossRefGoogle ScholarPubMed
96. Aboobaker, AA, Tomancak, P, Patel, N, Rubin, GM, Lai, EC. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci USA. 2005;102:1801722.CrossRefGoogle ScholarPubMed
97. Yang, WJ, Yang, DD, Na, SQ, Sandusky, GE, Zhang, Q, Zhao, GS. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem. 2005;280:93305.CrossRefGoogle ScholarPubMed
98. Schubert, C. MicroRNAs manage the heart. Nature Med. 2005; 11:714.CrossRefGoogle Scholar
99. Zhao, Y, Samal, E, Srivastava, D. Serum, response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Circulation. 2005;112:U107.Google Scholar
100. Maatouk, DM, McManus, MT, Harfe, BD. MicroRNA regulation of murine limb development. Dev Biol. 2005;283:698.Google Scholar
101. Lamb, J, Crawford, ED, Peck, D, Modell, JD, Blat, IC, Wrobel, MJ, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006; 313:192935.CrossRefGoogle ScholarPubMed
102. Lin, He, Xingyue, He, Lowe, SW, Hannom, GJ. MicroRNAs join the p53 network - another piece in the tumor- suppression puzzle. Nature Reviews Cancer. 2007;7:81922.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 194 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-898fc554b-54xgk Total loading time: 0.314 Render date: 2021-01-26T19:26:57.806Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

MicroRNA Signatures in Neurological Disorders
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

MicroRNA Signatures in Neurological Disorders
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

MicroRNA Signatures in Neurological Disorders
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *