Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T10:45:40.943Z Has data issue: false hasContentIssue false

Interactions entre recherches fondamentale et clinique. Deux exemples tirés d'une expérience personnelle

Published online by Cambridge University Press:  18 September 2015

D. Albe-Fessard*
Affiliation:
Laboratoire de physiologie de la nutrition, Institut national de recherche agronomique, France
*
Laboratoire de physiologie de la nutrition, Institut national de recherche agronomique, Jouy-En-Josas, France 78350
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Basic research helps to understand clinical knowledge which in turn leads to new fundamental research. Two examples are taken from the studies of the anomalies existing in the brain of patients suffering from Parkinson disease or deafferentation Pain. The researches performed to solve these two problems for the past 40 years (in particular by the author's working group) are replaced in the international context. In Man the precision of stereotaxic technique was improved by using the organisation of the somato-sensory thalamic projection described in animals by the physiologists. In the thalamus of Parkinsonian patients, the presence of cells bursting at tremor frequency led to search for the relations existing between the striato-nigral system and the motor thalamus. In the patients suffering from deafferentation Pain, a special role is attributed to the medial thalamus, whose characteristics were formerly studied in animals. The origin of the deafferentation Pain is nowadays studied in an animal model of this disease.

Type
Journée Des Sciences Neurologiques de l'Université de Montréal/Neurological Sciences Day at Université de Montréal
Copyright
Copyright © Canadian Neurological Sciences Federation 1988

References

RÉFÉRENCES

1.Brock, LG, Coombs, JS, Eccles, JC. The recording of potentials from motoneurones with an intracellular electrode. J Physiol, London 1952; 117:431460.Google ScholarPubMed
2.Albe-Fessard, D, Buser, P. Explorations de certaines activités du cortex moteur chez le chat par microélectrodes. J Physiol, Paris 1953; 46: 1416.Google Scholar
3.Mountcastle, VB, Henneman, E. Pattern of tactile representation in thalamus of cat. J Neurol 1949; 12:85100.Google ScholarPubMed
4.Mountcastle, VB, Henneman, E. The representation of tactile sensi-bility in the thalamus of the monkey. J of Comp Neurol 1952; 97: 409440.CrossRefGoogle ScholarPubMed
5.Rose, JE, Mountcastle, VB. Activity of single neurons in the tactile thalamic region of the cat in response to a transient peripheral stimulus. Bull. Johns Hopkins Hospital 1954; 94: 238282.Google ScholarPubMed
6.Adrian, ED. Afferent discharges to the sensory cortex from periph-eral sense organ. J Physiol, London 1941; 100: 159190.CrossRefGoogle Scholar
7.Marshall, WH, Woolsey, CN, Bard, P. Observations on cortical somatic sensory mechanisms of cat and monkey. J Neurophysiol 1941; 4: 125.CrossRefGoogle Scholar
8.Woolsey, CN, Fairman, D. Contralateral, ipsilateral and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep and other mammals. Surgery, St Louis 1946; 19: 684702.Google Scholar
9.Amassian, VE. Studies on organization of a somesthesic association area, including a single unit analysis. J Neurophysiol 1951; 14: 433444.CrossRefGoogle Scholar
10.Jasper, HH, Ajmone-Marsan, C. A stereotaxic atlas of diencephalon of the cat. The national research council of Canada, Ottawa 1954; pp 71.Google Scholar
11.Albe-Fessard, D, Rougeul, A. Activités d’origine somesthésiques évoquées sur le cortex non-spécifique du chat anesthésié au chloralose. Rôle du centre Médian du thalamus. Electroencephalog and Clin Neurophysiol 1958; 10: 131152.CrossRefGoogle Scholar
12.Albe-Fessard, D, Besson, JM. Convergent thalamic and cortical pro-jections — The non–specific system. In: Iggo, A, ed. Handbook of Sensory Physiology, vol. II, Somatosensory System. Springer-Verlag, Berlin, Heidelberg, New York 1973: 490560.Google Scholar
13.Magoun, HW, Mac Kinley, WA. The termination of ascending trigeminal and spinal tracts in the thalamus of the cat. Amer J Physiol 1942; 137:409416.CrossRefGoogle Scholar
14.Albe-Fessard, D, Arfel, G, Guiot, G, Hardy, J, Vourc’h, G, Hertzog, E, Aléonard, P. Dérivations d’activités spontanées et évoquées dans les structures cérébrales profondes de l’homme. Revue Neurol 1962; 106: 89105.Google Scholar
15.Albe-Fessard, D, Argel, G, Guiot, G. Activités électriques caractéris-tiques de quelques structures cérébrales chez l’homme. Ann Chirur 1963; 17: 11851214.Google Scholar
16.Horsley, W, Clarke, RH. The structure and function of the cerebel-lum examined by a new method. Brain 1908; 31: 54124.CrossRefGoogle Scholar
17.Percheron, G, Lacourly, N, Albe-Fessard, D. Lack of precision of thalamic stereotaxy based on cranial landmarks in some species of Macaca. Medical primatology; Proc 3rd conf med surg. Primates, Lyon Part II, Karger, Basel 1972: 297304.Google Scholar
18.Percheron, G. Ventricular landmarks for thalamic stereotaxy in Macaca. J Med Primatol 1975; 4: 217244.CrossRefGoogle ScholarPubMed
19.Talairach, J, de Ajuriaguerra, J, David, M. Etude stéréotaxique des structures encéphaliques profondes chez l’Homme. Presse médicale 1952; 60: 605609.Google Scholar
20.Féger, J, Ohye, C, Gallouin, F, Albe-Fessard, D. Stereotaxic technique for stimulation and recording in non-anesthetised monkeys: application to the determination of connections between caudate nucleus and substantia Nigra. Advances in Neurology, vol. 10, Meldrum, BS and Mardsen, CD, eds. Raven Press, New York 1975: 3545.Google Scholar
21.Albe-Fessard, D. Organization of somatic central projections. In: Neff, , ed. Contributions to Sensory Physiology. New York, Acad. Press, vol. 2 1967: 131167.Google Scholar
22.Albe-Fessard, D, Guiot, G, Lamarre, Y, Arfel, G. Activation of thala-mocortical projections related to tremorogenic processus. In: Purpura, and Yahr, , eds. The Thalamus, Columbia University Press 1966: 237253.Google Scholar
23.Schaltenbrand, G, Bailey, P. Introduction to stereotaxis with an Atlas of the Human Brain. Grune and Stratton: New York 1959: 494 pp.Google Scholar
24.Albe-Fessard, D. Physio-Pathologie du Parkinson. In: Le point sur la maladie de Parkinson Merck Sharp et Dohme, eds. Bruxelles 1973: 120.Google Scholar
25.Woolsey, CN, Chang, HT, Bard, P. Distribution of cortical potentials evoked by electrical stimulation of dorsal roots in Macaca Mulatta. Fed Proc 1947; 6: 230.Google ScholarPubMed
26.Albe-Fessard, D, Liebskind, J. Origine des messages somatosensitifs activant les cellules du cortex moteur chez le Singe. Exp Brain Res 1966; 1: 127146.CrossRefGoogle Scholar
27.Jasper, HH, Bertrand, C. Thalamic units involved in somatic sensa-tion and voluntary and involuntary movements in man. In: Purpura and Yahr, MD, eds. The Thalamus, Columbia University Press, New York 1966: 365390.Google Scholar
28.Bertrand, G, Jasper, H, Wong, A, Mathews, G. Microelectrode recording during stereotaxic surgery. Clin Neurosur 16: 328355.CrossRefGoogle Scholar
29.Ohye, C, Fukumashi, A, Narabayashi, H. Spontaneous and evoked activity of sensory neurons and their organization in the human thalamus. Z Neurol 1972; 203: 219234.Google Scholar
30.Raeva, S. Localization in human thalamus of units triggered during verbal commands, voluntary movements and tremor. Electroencephal and Clin Neurophysiol 1986; 63: 160173.CrossRefGoogle ScholarPubMed
31.Poirier, LJ. Experimental and morphological studies of midbrain dyskinesias. J Neurophysiol 1960; 23: 534545.CrossRefGoogle Scholar
32.Cordeau, JP, Gybels, J, Jasper, H. Microelectrode studies of unit dis-charges in the sensory motor cortex. Investigation in monkeys with experimental tremor. Neurology 1960; 10: 591600.CrossRefGoogle Scholar
33.Lamarre, Y, Dumont, M, Joffroy, AJ. Le tremblement de type parkin-sonien et l’action de l’harmaline. Faits expérimentaux et mécanismes hypothétiques. Arch Ital Biol 1973; 111: 493503.Google Scholar
34.Lamarre, Y, Joffroy, AJ. Rhythmic bursting unit potentials in the ventrolateral thalamus of the chronic monkey. Int J Neurol 1971; 8: 190197.Google Scholar
35.Joffroy, AJ, Lamarre, Y. Rhythmic unit firing in the precentrai cor-tex in relation with postural tremor in a deafferented limb. Brain Res 1971; 27: 386389.CrossRefGoogle Scholar
36.Ohye, C, Bouchard, R, Larochelle, L, Bédard, R, Boucher, R, Raphy, B, Poirier, LJ. Effect of dorsal rhizotomy on postural tremor in monkey. Exp Brain Res 1970; 10: 140150.CrossRefGoogle ScholarPubMed
37.Dahlstrom, A, Fuxe, K. Evidence for the existence of monoamine containing neurons in the central nervous system; I -Demonstration of monoamines in the cell bodies of brain system neurons. Acta Physiol Scand, 1964, 62, (Suppl: 62) 232: 155.Google Scholar
38.Anden, NN, Carlsson, A, Dahlstrom, A, Fuxe, K, Hillarp, NA, Larsson, K. Demonstration and mapping out of nigroneostriatal dopamine neurons. Life Sci 1964; 3: 523550.CrossRefGoogle Scholar
39.Frigyesi, TL, Purpura, DP. Electrophysiological analysis of recipro-cal caudato-nigral relations. Brain Res 1967; 6: 440456.CrossRefGoogle ScholarPubMed
40.Albe-Fessard, D, Raeva, S, Santiago, W. Sur les relations entre la Substance Noire et le Noyau Caudé. J Physiol, Paris 1967; 59: 324325.Google Scholar
41.Deniau, JM, Chevalier, G, Féger, J. Electrophysiological study of the nigrotectal pathway in the rat. Neuroscience Letters 1978; 10: 215220.CrossRefGoogle ScholarPubMed
42.Chevalier, G, Deniau, JM. Spatiotemporal organization of a branched tecto-spinal/tecto-diencephalic neuronal system. Neuroscience 1984; 12:427439.CrossRefGoogle ScholarPubMed
43.Sanderson, P, Mavoungou, R, Albe-Fessard, D. Changes in substan-tia Nigra pars reticulata activity following lesions of the substantia nigra pars compacta. Neuroscience Letters 1986; 67: 2530.CrossRefGoogle ScholarPubMed
44.Albe-Fessard, D, Sanderson, P. A demonstration of tonic inhibitory and facilitatory striatal actions on substantia Nigra neurons. In: Carpenter, M and Jaramian, A, eds. The Basal Ganglia II, Plenum Publishing Corporation 1987: 321326.CrossRefGoogle Scholar
45.Tasker, RR, Organ, LW, Hawrylyshyn, PA. The thalamus and mid-brain of Man. C. Thomas Pub. Springfield, Illinois, 505 pp.Google Scholar
46.Albe-Fessard, D, Levante, A, Lamour, Y. Origin of spinothalamic tract in monkeys. Brain Research 1974; 65: 503509.CrossRefGoogle ScholarPubMed
47.Albe-Fessard, D, Berkley, KJ, Kruger, HJ, Ralston, HJ III. Willis, W. Diencephalic mechanism of pain sensation. Brain Research Reviews 1985;9:217296.CrossRefGoogle Scholar
48.Albe-Fessard, D, Kruger, L. Duality of unit discharges from cat cen-trum medianum to natural and electrical stimulation. J Neurophysiol 1962; 25:320.CrossRefGoogle ScholarPubMed
49.Guilbaud, G, Menetrey, D. Rôle joué par les voies et aires de projec-tion lemniscales dans le contrôle des afférences extralemniscales au cours du sommeil naturel chez le chat. Electroenceph and Clin Neurophysiol 1970; 29: 295302.CrossRefGoogle Scholar
50.Melzack, R, Wall, PD. Pain mechanisms: a new theory. Science 1965; 150:971979.CrossRefGoogle ScholarPubMed
51.Albe-Fessard, D, Tasker, R, Yamashiro, Y, Dostrovsky, J. Effects of stimulation of the primary thalamic somatic relay for the relief of central pain. The Pain Clinic II. Ph Scherpereel et al, eds, VNO Science Press, Utrecht 1987: 207213.Google Scholar
52.Mehler, WR. Some neurological species differences — a posteriori. Ann NY Acad Sci 1969; 167: 424468.CrossRefGoogle Scholar
53.Bowsher, D. Termination of the central pain pathways in man: the conscious appreciation of pain. Brain 1957; 80: 606622.CrossRefGoogle ScholarPubMed
54.Boivie, J. An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. J Comp Neurol 1979; 186: 343370.CrossRefGoogle ScholarPubMed
55.Lombard, MC, Nashold, BS, Albe-Fessard, D. Deafferentation hypersensitivity in the rat after dorsal rhisotomy: a possible animal model of chronic Pain. Pain 1979; 6: 163174.CrossRefGoogle Scholar
56.Levitt, M. Dysesthesias and self-mutilation in humans and subhu-mans. A review of clinical and experimental studies. Brain Research Rev 1985; 10: 247290.CrossRefGoogle Scholar
57.Gorecki, JP, Tasker, RR, Hirayama, T, Dostrovski, J. Microelectrode recording from the deafferented thalamus. In: Narabayashi, , ed. Workshop on Neurophysiological Recordings During Stereotaxic Neurosurgery. Applied Neurophysiol 1988; sous-presse.Google Scholar
58.Rampin, O, Morain, P. Cortical involvement in dorsal horn cell hyperactivity and abnormal behavior in rats with dorsal root section. Somatosensory Research 1987; 4: 237251.CrossRefGoogle ScholarPubMed