Skip to main content Accessibility help


  • Access


      • Send article to Kindle

        To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Five-Year Incidence of Amyotrophic Lateral Sclerosis in British Columbia (2010-2015)
        Available formats

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Five-Year Incidence of Amyotrophic Lateral Sclerosis in British Columbia (2010-2015)
        Available formats

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Five-Year Incidence of Amyotrophic Lateral Sclerosis in British Columbia (2010-2015)
        Available formats
Export citation


Background: Amyotrophic lateral sclerosis (ALS) is a fatal degenerative neurological disease with significant effects on quality of life. International studies continue to provide consistent incidence values, though complete case ascertainment remains a challenge. The Canadian population has been understudied, and there are currently no quantitative data on the incidence of ALS in British Columbia (BC). The objectives of this study were to determine the five-year incidence rates of ALS in BC and to characterize the demographic patterns of the disease. Methods: The capture–recapture method was employed to estimate ALS incidence over a five-year period (2010-2015). Two sources were used to identify ALS cases: one database from an ALS medical centre and another from a not-for-profit ALS organization. Results: During this time period, there were 690 incident cases within the two sources. The capture–recapture method estimated 57 unobserved cases, corresponding to a crude five-year incidence rate of 3.29 cases per 100,000 (CI 95%=3.05-3.53). The mean age of diagnosis was 64.6 (CI 95%=59.7-69.4), with 63.5 (CI 95%=56.9-70.1) for men and 65.7 (CI 95%=58.6-72.7) for women. There was a slight male preponderance in incidence, with a 1.05:1 ratio to females. Peak numbers in incidence occurred between the ages of 70 and 79. Conclusions: The incidence of ALS in BC was found to be consistent with international findings though nominally higher than that in other Canadian provinces to date.


Amyotrophic lateral sclerosis (ALS) is a progressive degenerative motor neuron disease that leads to death in most patients just two to four years after diagnosis. 1 - 9 Although there are familial cases of ALS, and established risk factors include age and sex, the disease by and large remains of unknown aetiology. 10 The Canadian Institute for Health Information studied the expense burden of ALS on the Canadian economy in 2000-2001. 11 Though morbidity and drug costs were unavailable, they reported the direct cost of ALS on the Canadian economy to be CAD 13.8 million, with mortality costs set at CAD 168.6 million. 11 Moreover, the direct and indirect costs of previously working ALS patients are approximately CAD 70,000 per individual per year, representing a significant financial burden even in the context of a public healthcare system. 12

The rapid deterioration and increasing disability associated with ALS makes characterizing the current burden of disease an important benchmark for recognizing changing trends as they arise. Analyzing the geographical distribution of ALS cases by conducting smaller population studies may provide insight into previously unknown environmental risk factors. 10 Further, characterizing the impact of ALS regionally could improve quality of life for people living with ALS through facilitating more informed resource allocation. For example, provincial not-for-profit societies and outreach programs assist in providing essential assessment, care and equipment to maximize function and comfort throughout the course of the disease. Understanding disease trends could allow them to be more proactive rather than reactive to shifting patient numbers.

Several large international population studies have demonstrated ALS disease incidence rates ranging from 0.3 to 3.6 cases per 100,000 per year. 10 , 13 - 17 This broad range may represent true variation among populations, though it has been suggested that differing methodologies for case collection and inclusion as well as under-ascertainment of cases may also be contributory. 9 The demographics of this relatively rare disease have not been well characterized in Canada. 18 Wolfson and colleagues (2009) 18 systematically reviewed the Canadian literature concerning ALS incidence and prevalence and found only six published studies conducted in four provinces from 1974 to 2004, none of which were from British Columbia (BC). They concluded that there are limited data on the frequency of ALS in Canada and recommended that this be an area for future research. 18

To more effectively understand disease trends, there is a clear need to examine the burden of ALS in BC. The objectives of the present study are therefore: (1) to determine the five-year incidence rates of ALS from 2010 to 2015 in BC and (2) to characterize the demographic patterns of disease in this population.


Case Identification and Data Extraction

This population-based study was performed in British Columbia, Canada—a province with a well-defined area of 922,509 km2 and population of 4,400,057, as per the 2011 census (see Figure 1). 19 Healthcare in BC is publicly funded and is divided into five health authorities that serve the geographic regions of the province, with an additional First Nations Health Authority recently implemented. 20 Ethics approval for our study was obtained from the University of British Columbia Clinical Research Ethics Board and the Vancouver Coastal Health Research Authority.

Figure 1 Map of British Columbia, a province of Canada with a land mass of 922,509 km2 and a population of 4,400,057 as of the 2011 National Census. (Source: “Canada Blank Map - Wikimedia Commons.” 2016. Originally created by user Lokal_Profil with subsequent modification by Paul Robinson and later Riley Golby. Available at:

The study examined incident cases identified from January 1, 2010, through to December 31, 2014. Its design included the use of capture–recapture methodology to assist in more complete case ascertainment. 21 , 22 This collection method allows for estimations of unobserved cases when two or more sources are used. 21 , 22 To identify incident cases of ALS in our study, two sources were utilized: an ALS clinic patient database from the GF Strong Rehabilitation Centre and the ALS Society of BC patient database.

The GF Strong Rehabilitation Centre in Vancouver is the largest rehabilitation centre in BC. 24 The ALS Centre within this facility is comprised of a multidisciplinary healthcare professional team that provides outpatient assessment, intervention, consultation and educational services. 25 All patients with a neurologist-confirmed diagnosis of ALS can utilize these services and are registered in a database. These data are maintained throughout the course of their illness.

The ALS Society of BC is a not-for-profit organization that assists people with ALS through quality-of-life support, sponsoring research efforts and increasing public awareness and understanding of ALS. 26 Services such as an equipment loan program are provided throughout the progression of disease to individuals with a neurologist-confirmed diagnosis of ALS. The database contains up-to-date information regarding people with ALS that have used or are currently using their services. Extracted data from each source included date of diagnosis, age at diagnosis, sex and date of death.

Incident cases were totalled from each source, and the number of unobserved cases was estimated by assessing the degree of overlap between the two sources. Specifically, the Chapman 23 formula was employed to estimate total patients inclusive of the unobserved cases. Several studies have employed and endorsed this method as a useful tool in more accurate case ascertainment for the ALS population. 21 , 22

Inclusion and Exclusion Criteria

All patients diagnosed with probable or definitive ALS by a neurologist using the El Escorial criteria 27 during the observation window were included in our study. Suspected and possible cases were not included in collection databases and were therefore excluded. Patients with primary lateral sclerosis were excluded due to inconsistent collection between the two primary sources used.

Statistical Analysis

Crude incidence rates were calculated based on the capture–recapture total case estimates per 100,000 individuals in the total British Columbia population. Namely, total crude incident cases along with those stratified by age, sex and year, were summed and divided over the denominator population for each corresponding population groups at large. These figures were then related per 100,000 individuals for comparability. The denominator population values were drawn from Statistics Canada census values within each of the particular intervals examined. 28 The 95% confidence intervals (CI 95%) for all incidence rates were derived using the normal approximation.


From January 1, 2010, through December 31, 2014, there were 690 incident cases captured in the two sources. There were 388 patients identified by both sources. Source one (GF Strong ALS Centre) contained 129 unique cases and source two (ALS Society of BC) 173 unique cases. There were 57 unobserved incident cases estimated by the capture–recapture method, resulting in an estimated total of 747 patients over five years. This produced a crude incidence rate of 3.29 cases per 100,000 (CI 95%=3.05-3.53). When examining each year individually, the peak incidence occurred during 2013, with a crude capture–recapture rate of 3.77 per 100,000 (CI 95%=3.20-4.33). In contrast, the lowest incidence was during 2010 at 2.90 per 100,000 (CI 95%=2.40-3.40). There were slightly more male cases (51%) during the five-year study period, with rates at 3.38 per 100,000 (CI 95%=3.04-3.72) for men and 3.20 per 100,000 (CI 95%=2.87-3.53) for women. This produced a male-to-female crude incidence ratio of 1.05:1. More detailed results are provided in Table 1 and the Supplemental Data.

Table 1 Five-Year Capture–Recapture Estimated Incidence Rates

Among the various age ranges studied, the highest rate of incidence by age occurred within the 70-79 age group at 13.96 per 100,000 (CI 95%=12.07-15.86). Again, this peaked in 2013 at 17.72 per 100,000 (CI 95%=13.02-22.42). The mean age of diagnosis among all cases was 64.6 (CI 95%=59.7-69.4), with men at 63.5 (CI 95%=56.9-70.1) and women at 65.7 (CI 95%=58.6-72.7) years. More detailed results are provided in Table 2, Figures 1 and 2, and the Supplemental Data.

Table 2 Five-Year Capture–Recapture Estimated Incidence by Age Groups

Figure 2 Crude incidence rates per 100,000 individuals specific to age. This graph demonstrates all five years (2010-2015) individually shown as a range of incidence values for each age category. The cumulative five-year incidence value is highlighted as a point within the range.


The present study using the capture–recapture method reports on the incidence of ALS in British Columbia, Canada. Specifically, ALS incidence was found to be 3.29 (3.05-3.53) cases per 100,000 per year. Internationally, large studies have shown rates of 0.3 to 3.6 cases per 100,000. This number fits within this range, indicating that it is representative of the general population.

Despite this, the incidence rate does appear nominally higher than those reported in all other Canadian studies, where incidence ranges from 1.63 to 3.01 per 100,000 inhabitants in Ontario and Quebec, respectively. 18 There are several reasons why this may be the case. As the recent Canadian systematic review 18 noted, there is a dearth of evidence with respect to ALS epidemiology in Canada. To this end, many populations across Canada remain unstudied, opening the possibility that several regions in Canada may actually have a far greater burden of disease than expected. At the present time, more Canadian provinces remain unstudied than those with reported data. The heterogeneity among Canadian provinces both in geography and demographics creates a potential for valuable studies to examine possible unique regional risk factors. With the advent of new ALS registries, 29 it is likely that understanding of disease burden in Canada will continue to be fortified.

Another possibility for why BC numbers are more substantial could merely be reflective of the window of time in which they were measured. The closest window of Canadian data studied comes from a Quebec regional study 30 where 2005-2009 disease incidence was captured. They found a rate of 3.01 per 100,000 per year for the five-year window—second only in quantity and timing to the BC data. 30 It could be that more recent measurements of ALS numbers reflect a time of greater incidence or better case ascertainment. In the present study, as highlighted in the Supplemental Data, incidence increases each year from 2010 through to 2014 and then decreases during 2014. This is likely a function of observation time in the registry, but it could represent a genuine pattern of increase in British Columbia. Again, the presence of a dynamic national registry may assist in more accurately capturing trends in disease burden for Canada. If it can engage the Canadian ALS population effectively, no doubt it will be a less cumbersome way of noting shifts in incidence, rather than serial provincial studies.

Indeed, yet another possibility is that BC could actually have a truly greater incidence based on inherent provincial qualities—unascertained unifying risk factors for this disease. There are several factors associated with ALS risk—including age, male sex and family history of ALS—along with others currently being studied. 31 As more risk factors become defined, future studies in BC could focus on the traits of this population in relation to disease burden, especially if BC data consistently remain uniquely elevated.

It was not the goal of our study to consider what these might include, but one area of particular interest for future work may be to examine the impact of immigration on disease trends. In British Columbia, the region of birth for immigrants has shifted dramatically over time. Most notably, immigrants from the Asian continent now constitute the majority of newcomers to Canada, when prior to 1971 they amounted to less than 10%. 32 Further, Vancouver received 13.3% of all new immigrants to Canada in 2011 alone. 32 Within the current ALS data sources in British Columbia, information on patient ethnicity is not available; however, differences in disease incidence among various ethnic mosaics will be an important consideration for future provincial studies.

Our findings also indicate a very slight male preponderance, with a ratio of 1.05:1, as also noted in previous studies. 10 , 32 One possible explanation for this minor difference is that women may be less exposed to some environmental risk factors—such as trauma, physical activity, smoking, occupational exposure and others currently being investigated for their link to ALS. 31 Distinctly or concurrently, this difference could also reflect under-ascertainment of ALS among women, though this requires more investigation to discern. Some studies 3 , 6 , 33 have found a more significant difference between male and female case numbers, so it is possible that the similar rates noted in our study reflects improved diagnostic capture of female patients.

We also observed increasing cases with age-specific incidence, peaking between 70 and 79 years of age, with a mean age of diagnosis at 64.6 (CI 95%=59.7-69.4) years. Most international studies 8 , 10 , 15 , 28 have a peak incidence within a similar age range, with reduced rates at ages beyond 80 years. It has been suggested that this late peaking pattern reflects lifelong exposures to risk factors or agents that create a window of maximal susceptibility to ALS. 9 This maximum susceptibility appears to either taper off in the oldest age groups or reflects under-ascertainment in this age range. Understandably, the diagnosis of ALS in the elderly may be more difficult because of the presence of comorbidities, particularly with diseases affecting the musculoskeletal and nervous systems.

Study Strengths and Limitations

Our study was conducted in a well-defined geographical region, using two patient registries as the source of cases, as well as the El Escorial criteria for ALS diagnosis. Some of the limitations of this study, however, include the inability to achieve complete case ascertainment. Capture–recapture analysis was utilized for each age category and sex, as well as for the total population. This methodology is gaining momentum as an accurate way to achieve more complete case ascertainment in a setting of individually incomplete sources. Ideally, however, a single registry or centralized government tracking system would account for all diagnosed cases in the province. Encouragingly, a registry of this nature has been developed for use in Canada. 29


Using the capture–recapture method, in the present study we report the incidence of ALS in British Columbia, Canada, as 3.29 cases per 100,000 (CI 95%=3.05-3.53). Ours is the first study dedicated to incidence in the BC population and thus fulfils the role as an important regional benchmark for future studies of ALS interventions and epidemiology.


Many thanks to the Centre for Health Evaluation and Outcome Services (CHEOS) within the Providence Health Care Research Institute (Vancouver, BC), and in particular Joseph Puyat for his assistance with study design and implementation; to Eva Cham for her contributions in forming and maintaining ALS patient data within the ALS centre at the GF Strong Rehabilitation Centre; to Drs. Gary Poole and Nicole Fairbrother within the UBC Faculty of Medicine for their ongoing support of facilitating research efforts among medical undergraduates; and to Wendy Toyer and the rest of the ALS Society of British Columbia for their relentless support of the ALS community and maintenance of the ALS Society patient database. Finally, we acknowledge that JJC is an ALS Canada Tim E. Noël Postdoctoral Fellow and is supported by the Michael Smith Foundation for Health Research (MSFHR).


This work was unfunded.


Riley Golby, Brigitte Poirier, Marife Fabros, Jacquelyn J. Cragg, Masoud Yousefi and Neil Cashman hereby declare that they have nothing to disclose.

Statement of Authorship

RG and NC were responsible for research conception and design. RG, BP, MF, MY and NC were involved in implementation of this research project. RG and MY undertook the analysis of data and contributed to the methods section of the draft manuscript. RG, JC and NC contributed to interpretation of the research findings. RG developed the initial publication outline. All of the contributors co-authored multiple drafts of the manuscript. All made critical revisions for important intellectual content and approved the final manuscript.

Supplementary Material

For supplementary material/s referred to in this article, please visit


1. Logroscino, G, Traynor, BJ, Hardiman, O, Chiò, A, Couratier, P, Mitchell, JD, et al. Descriptive epidemiology of amyotrophic lateral sclerosis: new evidence and unsolved issues. J Neurol Neurosurg Psychiatry. 2008;79(1):6-11.
2. Sorenson, EJ, Stalker, AP, Kurland, LT, Windebank, AJ. Amyotrophic lateral sclerosis in Olmsted County, Minnesota, 1925 to 1998. Neurology. 2002;59:280-282.
3. Huisman, M, de Jong, S, van Doormaal, P, Weinreich, SS, Schelhaas, HJ, van der Kooi, AJ, et al. Population-based epidemiology of amyotrophic lateral sclerosis using capture–recapture methodology. J Neurol Neurosurg Psychiatry. 2011;82(10):1165-1170. Epub ahead of print May 27.
4. Mortara, P, Chiò, A, Rosso, M, Leone, M, Schiffer, D. Motor neuron disease in the province of Turin, Italy, 1966–1980. J Neurol Sci. 1984;66(2–3):165-173.
5. Lee, C, Chiu, Y, Wang, K, Hwang, CS, Lin, KH, Lee, IT, et al. Riluzole and prognostic factors in amyotrophic lateral sclerosis long-term and short-term survival: a population-based study of 1149 cases in Taiwan. J Epidemiol. 2013;23:35-40. Epub ahead of print Oct 27, 2012.
6. Pugliatti, M, Parish, L, Cossu, P, Leoni, S, Ticca, A, Saddi, MV, et al. Amyotrophic lateral sclerosis in Sardinia, insular Italy, 1995–2009. J Neurol. 2013;260(2):572-579. Epub ahead of print Sep 30, 2012.
7. Byrne, S, Elamin, M, Bede, P, Shatunov, A, Walsh, C, Corr, B, et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol. 2012;11(3):232-240. Epub ahead of print Feb 3. Erratum in: Lancet Neurol. 2012;11(5):388.
8. Chiò, A, Logroscino, G, Hardiman, O, Swingler, R, Mitchell, D, Beghi, E, et al. Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler. 2009;10(5–6):310-323.
9. Abhinav, K, Stanton, B, Johnston, C, Hardstaff, J, Orrell, RW, Howard, R, et al. Amyotrophic lateral sclerosis in South-East England: a population-based study. Neuroepidemiology. 2007;29(1–2):44-48. Epub ahead of print Sep 24.
10. Chiò, A, Logroscino, G, Traynor, B, Collins, J, Simeone, JC, Goldstein, LA, et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology. 2013;41(2):118-130. Epub ahead of print Jul 11.
11. Canadian Institute for Health Information. The Burden of Neurological Diseases, Disorders, and Injuries in Canada. Ottawa: Canadian Institute for Health Information; 2007. Available at:
12. Gladman, M, Dharamshi, C, Zinman, L. Economic burden of amyotrophic lateral sclerosis: a Canadian study of out-of-pocket expenses. Amyotroph Lateral Scler Frontotemporal Degener, 2014;15:426-432; Epub ahead of print Jul 15.
13. Traynor, B, Codd, M, Corr, B, Forde, C, Frost, E, Hardiman, O. Incidence and prevalence of ALS in Ireland, 1995–1997: a population-based study. Neurology. 1999;52(3):504-509.
14. Logroscino, G, Beghi, E, Zoccolella, S, Palagano, R, Fraddosio, A, Simone, IL, et al. Incidence of amyotrophic lateral sclerosis in southern Italy: a population based study. J Neurol Neurosurg Psychiatry. 2005;76(8):1094-1098.
15. Beghi, E, Millul, A, Micheli, A, Vitelli, E, Logroscino, G. Incidence of ALS in Lombardy, Italy. Neurology. 2007;68(2):141-145.
16. O’Toole, O, Traynor, B, Brennan, P, Sheehan, C, Frost, E, Corr, B, et al. Epidemiology and clinical features of amyotrophic lateral sclerosis in Ireland between 1995 and 2004. J Neurol Neurosurg Psychiatry. 2008;79(1):30-32. Epub ahead of print Jul 18.
17. Sejvar, J, Holman, R, Bresee, J, Kochanek, K, Schonberger, L. Amyotrophic lateral sclerosis mortality in the United States, 1979–2001. Neuroepidemiology. 2005;25(3):144-152.
18. Wolfson, C, Kilborn, S, Oskoui, M, Genge, A. Incidence and prevalence of amyotrophic lateral sclerosis in Canada: a systematic review of the literature. Neuroepidemiology. 2009;33(2):79-88. Epub ahead of print May 30.
19. Statistics Canada. Census Profile. Ottawa: Statistics Canada; 2012. Available at:
20. Province of British Columbia. Health Authorities; 2015. Available at:
21. Donaghy, C, Clarke, J, Patterson, C, Kee, F, Hardiman, O, Patterson, V. The epidemiology of motor neuron disease in Northern Ireland using capture–recapture methodology. Amyotroph Lateral Scler. 2010;11(4):374-378.
22. Huisman, M, de Jong, S, van Doormaal, P, Weinreich, SS, Schelhaas, HJ, van der Kooi, AJ, et al. Population based epidemiology of amyotrophic lateral sclerosis using capture–recapture methodology. J Neurol Neurosurg Psychiatry. 2011;82(10):1165-1170. Epub ahead of print May 27.
23. Chapman, CJ. Some properties of the hypergeometric distribution with applications to zoological censuses. Univ Calif Pub Stat. 1951;1:131-160.
24. Vancouver Coastal Health. GF Strong Rehabilitation Centre; 2015. Available at:
25. Vancouver Coastal Health. Amyotrophic Lateral Sclerosis Centre–GF Strong Rehabilitation Centre; 2015. Available at:
26. Amyotrophic Lateral Sclerosis Society of British Columbia. For Care and to Support a Cure for ALS; 2015. Available at:
27. Brooks B. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. J Neurol Sci. 1994;124(Suppl):96-107.
28. BC Stats. Population Estimates, British Columbia and Sub-Provincial; 2016. Available at:
29. Korngut, L, Genge, A, Johnston, M, Benstead, T, Bourque, P, Briemberg, H, et al. Establishing a Canadian registry of patients with amyotrophic lateral sclerosis. Can J Neurol Sci. 2013;40(01):29-35.
30. Lareau-Trudel, É, Fortin, É, Gauthier, M, Lavoie, S, Morissette, É, Mathieu, J. Epidemiological surveillance of amyotrophic lateral sclerosis in Saguenay region. Can J Neurol Sci. 2013;40(05):705-709.
31. Ingre, C, Roos, PM, Piehl, F, Kamel, F, Fang, F. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol. 2015;7:181-193.
32. Statistics Canada. Immigration and Ethnocultural Diversity in Canada; 2015. Available at:
33. Logroscino, G, Traynor, BJ, Hardiman, O, Chiò, A, Mitchell, D, Swingler, RJ, et al. Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry. 2010;81(4):385-390. Epub ahead of print Aug 25, 2009.