Skip to main content Accessibility help
×
Home

Effect of Lentiviral shRNA of Nogo Receptor on Rat Cortex Neuron Axon Outgrowth

  • Shengming Xu (a1), Mingyuan Liu (a2), Tao Zhang (a3), Bitao Lv (a1), Baifeng Liu (a4) and Wen Yuan (a1)...

Abstract:

Background and Aims:

Axon growth is crucial for injured neural tissue to recover; however it is difficult to achieve in general. Axon outgrowth is inhibited by the activation of the Nogo receptor (NgR) by one of three different ligands. The present study aimed to suppress the inhibitory effect of the three inhibitory proteins to facilitate axon outgrowth.

Methods:

A lentiviral vector, siNgR199 (that has the capacity to interfere with the gene of NgR expression), was constructed for suppressing the gene transcription of NgR. Rat cortex neurons and oligodendrocytes were prepared to observe the effect of siNgR199 on facilitating axon outgrowth.

Results:

After transfection, the lentiviral siRNA of NgR remained in target neurons for almost two weeks whereas the conventional siRNA of NgR remained in neurons less than five days. Lentivirus-mediated delivery of exogenous small interfering RNA (siNgR199) targeting NgR significantly reduced the expression of this receptor and promoted axon outgrowth. In contrast, provision of naked siRNA targeting NgR (NgRsiRNA) showed less inhibitory effect on NgR protein expression and did not affect axon outgrowth.

Conclusions:

Lentiviral siRNA of NgR effectively suppresses the expression of NgR in cultured neurons that facilitates the axon outgrowth. The data implicate that lentiviral siRNA of NgR has therapeutic potential in facilitating the recovery of injured neural tissue.

Résumé: Contexte et objectif:

La croissance axonale est cruciale pour la guérison du tissu nerveux lésé. Cependant, elle est difficile à réaliser. La régénération axonale est inhibée par l'activation du récepteur Nogo (NgR) par l'un de trois ligands différents. Le but de cette étude était de supprimer l'effet inhibiteur des trois protéines inhibitrices pour faciliter la régénération axonale.

Méthodes:

Un vecteur lentiviral, siNgR199 (qui peut interférer avec l'expression du gène NgR), a été construit pour supprimer la transcription du gène NgR. Des neurones corticaux et des oligodendrocytes de rat ont été préparés pour observer l'effet de siNgR199 sur la régénération axonale.

Résultats:

Après transfection, l'ARNsi lentiviral de NgR est demeuré dans les neurones cibles pendant près de deux semaines alors que l'ARNsi conventionnel de NgR est demeuré dans les neurones moins de cinq jours. La livraison médiée par le lentivirus de petits ARNsi (siNgR199) exogènes interférents ciblant NgR a diminué significativement l'expression de ce récepteur et favorisé la régénération axonale. Par contre, l'ARNsi nu ciblant NgR a eu moins d'effet inhibiteur sur l'expression de la protéine NgR et n'a pas influencé la régénération axonale.

Conclusions:

L'ARNsi lentiviral de NgR supprime efficacement l'expression de NgR dans des neurones en culture, facilitant la régénération axonale. Ces données sont compatibles avec un effet thérapeutique potentiel de l'ARNsi lentiviral de NgR pour faciliter la récupération de tissus nerveux lésés.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of Lentiviral shRNA of Nogo Receptor on Rat Cortex Neuron Axon Outgrowth
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of Lentiviral shRNA of Nogo Receptor on Rat Cortex Neuron Axon Outgrowth
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of Lentiviral shRNA of Nogo Receptor on Rat Cortex Neuron Axon Outgrowth
      Available formats
      ×

Copyright

Corresponding author

Department of Orthopaedics, Shanghai Changzheng Hospital, 415 Fengyang Road, Shanghai, 200003, China

References

Hide All
1 Wang, KC, Kim, JA, Sivasankaran, R, Segal, R, He, Z. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature. 2002;420(6911):74–8.
2 Wang, KC, Koprivica, V, Kim, JA, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature. 2002;417(6892):9414.
3 Xie, F, Zheng, B. White matter inhibitors in CNS axon regeneration failure. Exp Neurol. 2008;209(2):302–12.
4 Robak, LA, Venkatesh, K, Lee, H, et al. Molecular basis of the interactions of the Nogo-66 receptor and its homolog NgR2 with myelin-associated glycoprotein: development of NgROMNI-Fc, a novel antagonist of CNS myelin inhibition. J Neurosci. 2009;29(18):576883.
5 Giger, RJ, Venkatesh, K, Chivatakarn, O, et al. Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems. Restor Neurol Neurosci. 2008;26(2-3):97115.
6 Zander, H, Reineke, U, Schneider-Mergener, J, Skerra, A. Epitope mapping of the neuronal growth inhibitor Nogo-A for the Nogo receptor and the cognate monoclonal antibody IN-1 by means of the SPOT technique. J Mol Recognit. 2007;20(3):185–96.
7 GrandPré, T, Li, S, Strittmatter, SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature. 2002;417(6888): 547–51.
8 Yu, P, Huang, L, Zou, J, et al. Immunization with recombinant Nogo-66 receptor (NgR) promotes axonal regeneration and recovery of function after spinal cord injury in rats. Neurobiol Dis. 2008;32 (3):535–42.
9 Steward, O, Sharp, K, Yee, KM, Hofstadter, M. A re-assessment of the effects of a Nogo-66 receptor antagonist on regenerative growth of axons and locomotor recovery after spinal cord injury in mice. Exp Neurol. 2008;209(2):446–68.
10 Schmidt, FR. The RNA interference-virus interplay: tools of nature for gene modulation, morphogenesis, evolution and a possible mean for aflatoxin control. Appl Microbiol Biotechnol. 2009;83 (4):611–15.
11 Manjunath, N, Wu, H, Subramanya, S, Shankar, P. Lentiviral delivery of short hairpin RNAs. Adv Drug Deliv Rev. 2009;61(9):732–45.
12 Van den Haute, C, Eggermont, K, Nuttin, B, Debyser, Z, Baekelandt, V. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in mouse brain. Hum Gene Ther. 2003;14(1):1799–807.
13 Centeno, C, Repici, M, Chatton, JY, et al. Role of the JNK pathway in NMDA-mediated excitotoxicity of cortical neurons. Cell Death Differ. 2007;14(2):240–53.
14 Zhang, Y, Yang, H, Xiao, B, et al. Dendritic cells transduced with lentiviral-mediated RelB-specific ShRNAs inhibit the development of experimental autoimmune myasthenia gravis. Mol Immunol. 2009;46(4):657–67.
15 Yang, LJ, Schnaar, RL. Axon regeneration inhibitors. Neurol Res. 2008;30(10):104752.
16 Sioud, M. Deciphering the code of innate immunity recognition of siRNAs. Methods Mol Biol. 2009;487:4159.
17 Saito, T, Yamada, K, Wang, Y, et al. Expression of ABCA2 protein in both non-myelin-forming and myelin-forming Schwann cells in the rodent peripheral nerve. Neurosci Lett. 2007;414(1):3540.
18 Saher, G, Quintes, S, Möbius, W, et al. Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction. J Neurosci. 2009;29 (19):6094–104.
19 Martin, I, Andres, CR, Védrine, S, et al. Effect of the oligodendrocyte myelin glycoprotein (OMgp) on the expansion and neuronal differentiation of rat neural stem cells. Brain Res. 2009;1284(1): 2230.
20 Kim, JE, Liu, BP, Park, JH, Strittmatter, SM. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron 2004;44(3):439451.
21 Ahmed, Z, Dent, RG, Suggate, EL, et al. Disinhibition of neurotrophin-induced dorsal root ganglion cell neurite outgrowth on CNS myelin by siRNA-mediated knockdown of NgR, p75NTR and Rho-A. Mol Cell Neurosci. 2005;28(3):509–23.
22 Wang, D, Zhang, JJ, Yang, ZX. Treatment of spinal cord injury by transplanting neural stem cells with NgR gene silencing. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2010;22(1):2831.
23 Wang, F, Zhu, Y. The interaction of Nogo-66 receptor with Nogo-p4 inhibits the neuronal differentiation of neural stem cells. Neuroscience. 2008;151(1):7481.
24 Chivatakarn, O, Kaneko, S, He, Z, Tessier-Lavigne, M, Giger, RJ. The Nogo-66 receptor NgR1 is required only for the acute growth cone-collapsing but not the chronic growth-inhibitory actions of myelin inhibitors. J Neurosci 2007;27(43):711724.
25 Li, S, Liu, BP, Budel, S, et al. Blockade of Nogo-66, myelinassociated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci. 2004;24 (8911):1051120.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed