Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T09:20:22.525Z Has data issue: false hasContentIssue false

Effect of Lentiviral shRNA of Nogo Receptor on Rat Cortex Neuron Axon Outgrowth

Published online by Cambridge University Press:  02 December 2014

Shengming Xu
Affiliation:
Department of Orthopaedics, Shanghai Changzheng Hospital
Mingyuan Liu
Affiliation:
Department of Neurology, Shanghai Changzheng Hospital
Tao Zhang
Affiliation:
Department of Orthopaedics, Shanghai sixth People's Hospital, Shanghai
Bitao Lv
Affiliation:
Department of Orthopaedics, Shanghai Changzheng Hospital
Baifeng Liu
Affiliation:
Department of Orthopaedics, Daqing People's Hospital, Saertu Development Zone, Daqing City, China
Wen Yuan*
Affiliation:
Department of Orthopaedics, Shanghai Changzheng Hospital
*
Department of Orthopaedics, Shanghai Changzheng Hospital, 415 Fengyang Road, Shanghai, 200003, China
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background and Aims:

Axon growth is crucial for injured neural tissue to recover; however it is difficult to achieve in general. Axon outgrowth is inhibited by the activation of the Nogo receptor (NgR) by one of three different ligands. The present study aimed to suppress the inhibitory effect of the three inhibitory proteins to facilitate axon outgrowth.

Methods:

A lentiviral vector, siNgR199 (that has the capacity to interfere with the gene of NgR expression), was constructed for suppressing the gene transcription of NgR. Rat cortex neurons and oligodendrocytes were prepared to observe the effect of siNgR199 on facilitating axon outgrowth.

Results:

After transfection, the lentiviral siRNA of NgR remained in target neurons for almost two weeks whereas the conventional siRNA of NgR remained in neurons less than five days. Lentivirus-mediated delivery of exogenous small interfering RNA (siNgR199) targeting NgR significantly reduced the expression of this receptor and promoted axon outgrowth. In contrast, provision of naked siRNA targeting NgR (NgRsiRNA) showed less inhibitory effect on NgR protein expression and did not affect axon outgrowth.

Conclusions:

Lentiviral siRNA of NgR effectively suppresses the expression of NgR in cultured neurons that facilitates the axon outgrowth. The data implicate that lentiviral siRNA of NgR has therapeutic potential in facilitating the recovery of injured neural tissue.

Résumé:

Résumé:Contexte et objectif:

La croissance axonale est cruciale pour la guérison du tissu nerveux lésé. Cependant, elle est difficile à réaliser. La régénération axonale est inhibée par l'activation du récepteur Nogo (NgR) par l'un de trois ligands différents. Le but de cette étude était de supprimer l'effet inhibiteur des trois protéines inhibitrices pour faciliter la régénération axonale.

Méthodes:

Un vecteur lentiviral, siNgR199 (qui peut interférer avec l'expression du gène NgR), a été construit pour supprimer la transcription du gène NgR. Des neurones corticaux et des oligodendrocytes de rat ont été préparés pour observer l'effet de siNgR199 sur la régénération axonale.

Résultats:

Après transfection, l'ARNsi lentiviral de NgR est demeuré dans les neurones cibles pendant près de deux semaines alors que l'ARNsi conventionnel de NgR est demeuré dans les neurones moins de cinq jours. La livraison médiée par le lentivirus de petits ARNsi (siNgR199) exogènes interférents ciblant NgR a diminué significativement l'expression de ce récepteur et favorisé la régénération axonale. Par contre, l'ARNsi nu ciblant NgR a eu moins d'effet inhibiteur sur l'expression de la protéine NgR et n'a pas influencé la régénération axonale.

Conclusions:

L'ARNsi lentiviral de NgR supprime efficacement l'expression de NgR dans des neurones en culture, facilitant la régénération axonale. Ces données sont compatibles avec un effet thérapeutique potentiel de l'ARNsi lentiviral de NgR pour faciliter la récupération de tissus nerveux lésés.

Type
Original Article
Copyright
Copyright © Canadian Neurological Sciences Federation 2011

References

1 Wang, KC, Kim, JA, Sivasankaran, R, Segal, R, He, Z. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature. 2002;420(6911):74–8.Google Scholar
2 Wang, KC, Koprivica, V, Kim, JA, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature. 2002;417(6892):9414.Google Scholar
3 Xie, F, Zheng, B. White matter inhibitors in CNS axon regeneration failure. Exp Neurol. 2008;209(2):302–12.Google Scholar
4 Robak, LA, Venkatesh, K, Lee, H, et al. Molecular basis of the interactions of the Nogo-66 receptor and its homolog NgR2 with myelin-associated glycoprotein: development of NgROMNI-Fc, a novel antagonist of CNS myelin inhibition. J Neurosci. 2009;29(18):576883.CrossRefGoogle ScholarPubMed
5 Giger, RJ, Venkatesh, K, Chivatakarn, O, et al. Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems. Restor Neurol Neurosci. 2008;26(2-3):97115.Google Scholar
6 Zander, H, Reineke, U, Schneider-Mergener, J, Skerra, A. Epitope mapping of the neuronal growth inhibitor Nogo-A for the Nogo receptor and the cognate monoclonal antibody IN-1 by means of the SPOT technique. J Mol Recognit. 2007;20(3):185–96.Google Scholar
7 GrandPré, T, Li, S, Strittmatter, SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature. 2002;417(6888): 547–51.Google Scholar
8 Yu, P, Huang, L, Zou, J, et al. Immunization with recombinant Nogo-66 receptor (NgR) promotes axonal regeneration and recovery of function after spinal cord injury in rats. Neurobiol Dis. 2008;32 (3):535–42.Google Scholar
9 Steward, O, Sharp, K, Yee, KM, Hofstadter, M. A re-assessment of the effects of a Nogo-66 receptor antagonist on regenerative growth of axons and locomotor recovery after spinal cord injury in mice. Exp Neurol. 2008;209(2):446–68.Google Scholar
10 Schmidt, FR. The RNA interference-virus interplay: tools of nature for gene modulation, morphogenesis, evolution and a possible mean for aflatoxin control. Appl Microbiol Biotechnol. 2009;83 (4):611–15.Google Scholar
11 Manjunath, N, Wu, H, Subramanya, S, Shankar, P. Lentiviral delivery of short hairpin RNAs. Adv Drug Deliv Rev. 2009;61(9):732–45.CrossRefGoogle ScholarPubMed
12 Van den Haute, C, Eggermont, K, Nuttin, B, Debyser, Z, Baekelandt, V. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in mouse brain. Hum Gene Ther. 2003;14(1):1799–807.CrossRefGoogle ScholarPubMed
13 Centeno, C, Repici, M, Chatton, JY, et al. Role of the JNK pathway in NMDA-mediated excitotoxicity of cortical neurons. Cell Death Differ. 2007;14(2):240–53.Google Scholar
14 Zhang, Y, Yang, H, Xiao, B, et al. Dendritic cells transduced with lentiviral-mediated RelB-specific ShRNAs inhibit the development of experimental autoimmune myasthenia gravis. Mol Immunol. 2009;46(4):657–67.Google Scholar
15 Yang, LJ, Schnaar, RL. Axon regeneration inhibitors. Neurol Res. 2008;30(10):104752.Google Scholar
16 Sioud, M. Deciphering the code of innate immunity recognition of siRNAs. Methods Mol Biol. 2009;487:4159.Google Scholar
17 Saito, T, Yamada, K, Wang, Y, et al. Expression of ABCA2 protein in both non-myelin-forming and myelin-forming Schwann cells in the rodent peripheral nerve. Neurosci Lett. 2007;414(1):3540.CrossRefGoogle ScholarPubMed
18 Saher, G, Quintes, S, Möbius, W, et al. Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction. J Neurosci. 2009;29 (19):6094–104.Google Scholar
19 Martin, I, Andres, CR, Védrine, S, et al. Effect of the oligodendrocyte myelin glycoprotein (OMgp) on the expansion and neuronal differentiation of rat neural stem cells. Brain Res. 2009;1284(1): 2230.Google Scholar
20 Kim, JE, Liu, BP, Park, JH, Strittmatter, SM. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron 2004;44(3):439451.CrossRefGoogle ScholarPubMed
21 Ahmed, Z, Dent, RG, Suggate, EL, et al. Disinhibition of neurotrophin-induced dorsal root ganglion cell neurite outgrowth on CNS myelin by siRNA-mediated knockdown of NgR, p75NTR and Rho-A. Mol Cell Neurosci. 2005;28(3):509–23.Google Scholar
22 Wang, D, Zhang, JJ, Yang, ZX. Treatment of spinal cord injury by transplanting neural stem cells with NgR gene silencing. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2010;22(1):2831.Google ScholarPubMed
23 Wang, F, Zhu, Y. The interaction of Nogo-66 receptor with Nogo-p4 inhibits the neuronal differentiation of neural stem cells. Neuroscience. 2008;151(1):7481.Google Scholar
24 Chivatakarn, O, Kaneko, S, He, Z, Tessier-Lavigne, M, Giger, RJ. The Nogo-66 receptor NgR1 is required only for the acute growth cone-collapsing but not the chronic growth-inhibitory actions of myelin inhibitors. J Neurosci 2007;27(43):711724.Google Scholar
25 Li, S, Liu, BP, Budel, S, et al. Blockade of Nogo-66, myelinassociated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci. 2004;24 (8911):1051120.Google Scholar