Skip to main content Accessibility help
×
Home

Does Resetting the Immune System Fix Multiple Sclerosis?

  • Gauruv Bose (a1), Simon D. X. Thebault (a1), Harold L. Atkins (a2) and Mark S. Freedman (a1)

Abstract:

Multiple sclerosis is the leading non-traumatic cause of disability in young adults, affecting up to 100,000 Canadians. This chronic inflammatory and neurodegenerative disease of the central nervous system leads to irreversible neurologic disability if inadequately controlled. Though many current medications are available that reduce inflammatory damage, most patients continue to show some evidence of disease activity and accrue disability. In this review, we discuss the role of immune ablation followed by autologous hematopoietic stem cell transplantation (AHSCT), a therapeutic option for select patients with a more aggressive disease course. By “resetting” the immune system with a variety of ablative conditioning regimens, followed by immune reconstitution, this therapy has shown a durable response in halting evidence of inflammatory activity in most patients, without the need for continued disease-modifying therapies (DMT). Since the introduction of this therapy, there have been advances in patient selection and supportive care, such that morbidity has significantly declined and treatment-related mortality is minimized. Recent phase-II trials have shown excellent results in efficacy and safety of AHSCT; however, challenges exist which require ongoing study. The future challenges include comparing the variety of AHSCT conditioning regimens with each other as well as with existing highly effective DMT; identifying patients with an aggressive disease course through novel biomarkers who may benefit the most from AHSCT; and surveillance of long-term outcomes of different treatment protocols. In select patients, replacing the immune system with AHSCT holds promise of fundamentally altering the trajectory of their aggressive disease course.

Est-ce que le fait de réinitialiser le système immunitaire permet de guérir de la sclérose en plaques? La sclérose en plaques (SP) demeure la principale cause non-traumatique d’invalidité chez les jeunes adultes et affecte jusqu’à 100 000 Canadiens. Cette maladie chronique neuro-dégénérative inflammatoire du système nerveux central entraîne une incapacité neurologique irréversible si elle n’est pas adéquatement contrôlée. Bien que de nombreux traitements médicaux permettent de réduire les dommages inflammatoires de la SP, on continue à observer chez la plupart des patients des signes d’activité de la maladie et une invalidité qui va en croissant. Dans cette étude, nous voulons discuter du rôle de la suppression immunitaire (immune ablation) suivie d’une greffe autologue de moelle osseuse (autologous hematopoietic stem cell transplantation ou AHSCT). Il s’agit ainsi d’une option thérapeutique pour certains patients dont l’évolution de la SP est davantage fulgurante. En « remettant à zéro » le système immunitaire des patients atteints de SP à l’aide de régimes de suppression de la réponse immunitaire, lesquels sont suivis ensuite par une reconstitution immunitaire, cette thérapie a pour effet de stopper l’activité inflammatoire chez la plupart d’entre eux sans qu’ils n’aient eu à entamer des thérapies continues modifiant le cours de la SP. À notre avis, cela constitue une réponse durable. Depuis l’introduction de cette thérapie, on a noté des avancées en ce qui regarde la sélection des patients et les soins prodigués, de sorte que les taux de morbidité ont diminué de façon notable et que la mortalité reliée aux traitements a été minimisée. De récents essais cliniques de phase II ont par ailleurs montré d’excellents résultats en matière d’efficacité et de sécurité. Cela dit, certains défis exigent des études supplémentaires : songeons, par exemple, à une comparaison entre les divers régimes de suppression de la réponse immunitaire et de greffe de moelle osseuse; au fait de comparer ces mêmes régimes à d’autres thérapies modificatrices de la maladie qu’on estime à l’heure actuelle très efficaces; à l’identification, au moyen de biomarqueurs novateurs, de patients dont l’évolution de la SP est davantage accélérée, patients qui pourraient le plus bénéficier d’une greffe de la moelle osseuse ; à la nécessité d’un suivi à long terme des différents protocoles de traitement et de leurs résultats. En somme, le fait de réinitialiser le système immunitaire de certains patients au moyen d’une greffe de moelle osseuse laisse entrevoir la possibilité de pouvoir modifier fondamentalement la trajectoire fulgurante de cette maladie.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Does Resetting the Immune System Fix Multiple Sclerosis?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Does Resetting the Immune System Fix Multiple Sclerosis?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Does Resetting the Immune System Fix Multiple Sclerosis?
      Available formats
      ×

Copyright

Corresponding author

Correspondence to: Mark S. Freedman, Division of Neurology, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa Hospital, General Campus, 501 Smyth Road, Box 601, Ottawa, ON K1H 8L6, Canada. Email: mfreedman@toh.ca

References

Hide All
1. Multiple Sclerosis International Federation. Atlas of MS 2013: Mapping multiple sclerosis around the world. London: Multiple Sclerosis International Federation; 2013. Available at: http://www.msif.org/wp-content/uploads/2014/09/Atlas-of-MS.pdf.
2.Public Health Agency of Canada. Multiple sclerosis, crude prevalence rate. Canadian Chronic Disease Surveillance System (CCDSS). Ottawa: Public Health InfoBase; 2015. Available at: https://health-infobase.canada.ca/ccdss/data-tool/.
3. Marrie, RA, Yu, N, Blanchard, J, Leung, S, Elliott, L. The rising prevalence and changing age distribution of multiple sclerosis in Manitoba. Neurology. 2010;74(6):465–71.
4. Kingwell, E, Zhu, F, Marrie, RA, et al. High incidence and increasing prevalence of multiple sclerosis in British Columbia, Canada: findings from over two decades (1991–2010). J Neurol. 2015;262(10):2352–63.
5. Marrie, RA, Fisk, JD, Stadnyk, KJ, et al. The incidence and prevalence of multiple sclerosis in Nova Scotia, Canada. Can J Neurol Sci. 2013;40(6):824–31.
6. Gilmour, H, Ramage-Morin, PL, Wong, SL. Health reports multiple sclerosis: prevalence and impact. Ottawa, Canada; 2018. Available from: www.statcan.gc.ca.
7. Harper, AC, Harper, DA, Chambers, LW, Cino, PM, Singer, J. An epidemiological description of physical, social and psychological problems in multiple sclerosis. J Chronic Dis. 1986;39(4):305–10.
8. Trisolini, M, Honeycutt, A, Wiener, J, Lesesne, S. Global economic impact of multiple sclerosis. Vol. May, Multiple Sclerosis International Federation. London, United Kingdom; 2010. Available from: https://www.msif.org/wp-content/uploads/2014/09/Global_economic_impact_of_MS.pdf.
9. Asche, C V, Ho, E, Chan, B, Coyte, PC. Economic consequences of multiple sclerosis for Canadians. Acta Neurol Scand. 1997;95(5):268–74.
10. Ernstsson, O, Gyllensten, H, Alexanderson, K, Tinghög, P, Friberg, E, Norlund, A. Cost of illness of multiple sclerosis – A systematic review. PLoS ONE. 2016;11(7):e0159129.
11. Karampampa, K, Gustavsson, A, Miltenburger, C, Kindundu, CM, Selchen, DH. Treatment experience, burden, and unmet needs (TRIBUNE) in multiple sclerosis: the costs and utilities of MS patients in Canada. J Popul Ther Clin Pharmacol. 2012;19(1):e1125.
12. Lebrun, C. Association between clinical conversion to multiple sclerosis in radiologically isolated syndrome and magnetic resonance imaging, cerebrospinal fluid, and visual evoked potential. Arch Neurol. 2009;66(7):841.
13. Arrambide, G, Tintore, M, Espejo, C, et al. The value of oligoclonal bands in the multiple sclerosis diagnostic criteria. Brain. 2018;141(4):1075–84.
14. Thompson, AJ, Banwell, BL, Barkhof, F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.
15. Lassmann, H, van Horssen, J, Mahad, D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol. 2012;8(11):647–56.
16. Ontaneda, D, Fox, RJ. Progressive multiple sclerosis. Curr Opin Neurol. 2015;28(3):237–43.
17. Kurtzke, JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–52.
18. Kaufman, M, Moyer, D, Norton, J. The significant change for the Timed 25-foot Walk in the multiple sclerosis functional composite. Mult Scler. 2000;6(4):286–90.
19. Cutter, G, Baier, M, Rudick, R. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain. 1999;122(5):871–82.
20. Miller, DM, Rudick, RA, Cutter, G, Baier, M, Fischer, JS. Clinical significance of the multiple sclerosis functional composite: relationship to patient-reported quality of life. Arch Neurol. 2000;57(9):1319–24.
21. Trojano, M, Paolicelli, D, Bellacosa, A, Cataldo, S. The transition from relapsing-remitting MS to irreversible disability: clinical evaluation. Neurol Sci. 2003;24:s268–70.
22. Gold, R, Wolinsky, JS, Amato, MP, Comi, G. Evolving expectations around early management of multiple sclerosis. Ther Adv Neurol Disord. 2010;3(6):351–67.
23. Tremlett, H, Yinshan, Z, Devonshire, V. Natural history of secondary-progressive multiple sclerosis. Mult Scler J. 2008;14(3):314–24.
24. Noyes, K, Weinstock-Guttman, B. Impact of diagnosis and early treatment on the course of multiple sclerosis. Am J Manag Care. 2013;19(Suppl. 17):s321–31.
25. Peterson, L, Fujinami, R. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J Neuroimmunol. 2007;184(1–2):3744.
26. Weinshenker, BG, Rice, GPA, Noseworthy, JH, Carriere, W, Baskerville, J, Ebers, GC. The natural history of multiple sclerosis: a geographically based study. Brain. 1991;114(2):1045–56.
27. Menon, S, Shirani, A, Zhao, Y, et al. Characterising aggressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013;84(11):1192–8.
28. Freedman, MS, Rush, CA. Severe, highly active, or aggressive multiple sclerosis. Contin Lifelong Learn Neurol. 2016;22(3):761–84.
29. Rush, CA, MacLean, HJ, Freedman, MS. Aggressive multiple sclerosis: proposed definition and treatment algorithm. Nat Rev Neurol. 2015;11(7):379–89.
30. Chitnis, T, Gonzalez, C, Healy, BC, et al. Neurofilament light chain serum levels correlate with 10-year MRI outcomes in multiple sclerosis. Ann Clin Transl Neurol. 2018;5(12):1478–91.
31. Brown, JWL, Coles, A, Horakova, D, et al. Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA. 2019;321(2):175.
32. Cohen, JA, Coles, AJ, Arnold, DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1819–28.
33. Daniel, O. Determining the effectiveness of earLy intensive versus escalation approaches for RRMS (DELIVER-MS). Bethesda (MD): National Library of Medicine (US); 2018. Available at: ClinicalTrials.gov Identifier: NCT03535298; accessed May 24, 2018.
34. Havrdova, E, Galetta, S, Stefoski, D, Comi, G. Freedom from disease activity in multiple sclerosis. Neurology. 2010;74(17):S37.
35. Hegen, H, Bsteh, G, Berger, T. ‘No evidence of disease activity’ – is it an appropriate surrogate in multiple sclerosis? Eur J Neurol. 2018;25(9):1107–e101.
36. Sormani, MP, Muraro, PA, Saccardi, R, Mancardi, G. NEDA status in highly active MS can be more easily obtained with autologous hematopoietic stem cell transplantation than other drugs. Mult Scler J. 2017;23(2):201–4.
37. Burt, RK, Burns, W, Hess, A. Bone marrow transplantation for multiple sclerosis. Bone Marrow Transplant. 1995;16(1):16.
38. Burt, RK, Traynor, AE. Hematopoietic stem cell transplantation: a new therapy for autoimmune disease. Oncologist. 1999;4:7783.
39. Sorror, ML. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106(8):2912–9.
40. Friend, BD, Tang, K, Markovic, D, Elashoff, D, Moore, TB, Schiller, GJ. Identifying risk factors associated with worse outcomes in adolescents and young adults undergoing hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2019;e27940.
41. Cohen, JA, Baldassari, LE, Atkins, HL, et al. Autologous hematopoietic cell transplantation for treatment-refractory relapsing multiple sclerosis: position statement from the american society for blood and marrow transplantation. Biol Blood Marrow Transplant. 2019;25(5):845–54
42. Snowden, JA, Badoglio, M, Labopin, M, et al. Evolution, trends, outcomes, and economics of hematopoietic stem cell transplantation in severe autoimmune diseases. Blood Adv. 2017;1(27):2742–55.
43. Holmqvist, AS, Chen, Y, Berano Teh, J, et al. Risk of solid subsequent malignant neoplasms after childhood Hodgkin lymphoma—Identification of high-risk populations to guide surveillance: a report from the Late Effects Study Group. Cancer. 2019;125(8):1373–83.
44. Majhail, NS, Brazauskas, R, Rizzo, JD, et al. Secondary solid cancers after allogeneic hematopoietic cell transplantation using busulfan-cyclophosphamide conditioning. Blood. 2011;117(1):316–22.
45. Atkins, HL, Freedman, MS. Five questions answered: a review of autologous hematopoietic stem cell transplantation for the treatment of multiple sclerosis. Neurotherapeutics. 2017; 14(4):888–93
46. Sormani, MP, Muraro, PA, Schiavetti, I, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis. Neurology. 2017;88(22):2115–22.
47. Shevchenko, JL, Kuznetsov, AN, Ionova, TI, et al. Autologous hematopoietic stem cell transplantation with reduced-intensity conditioning in multiple sclerosis. Exp Hematol. 2012;40(11):892–8.
48. Burman, J, Iacobaeus, E, Svenningsson, A, et al. Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience. J Neurol Neurosurg Psychiatry. 2014;85(10):1116–21.
49. Burt, RK, Balabanov, R, Han, X, et al. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting Multiple Sclerosis. 2015;313(3):275–84.
50. Atkins, HL, Bowman, M, Allan, D, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016;388(10044):576–85.
51. Nash, RA, Hutton, GJ, Racke, MK, et al. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology. 2017;88(9):842–52.
52. Burt, RK, Balabanov, R, Burman, J, et al. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis. JAMA. 2019;321(2):165.
53. Moore, JJ, Massey, JC, Ford, CD, et al. Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(5):514–21.
54. Atkins, H, Freedman, MS. Immune ablation followed by autologous hematopoietic stem cell transplantation for the treatment of poor prognosis multiple sclerosis. Methods Mol Biol. 2009;549:231–46.
55. Skerget, M, Skopec, B, Zontar, D, Cernelc, P. Mobilization with cyclophosphamide reduces the number of lymphocyte subpopulations in the leukapheresis product and delays their reconstitution after autologous hematopoietic stem cell transplantation in patients with multiple myeloma. Radiol Oncol 2016;50(4):402–8.
56. Rust, H, Kuhle, J, Kappos, L, Derfuss, T. Severe exacerbation of relapsing-remitting multiple sclerosis after G-CSF therapy. Neurol – Neuroimmunol Neuroinflammation. 2016;3(2):e215.
57. Hequet, O. Hematopoietic stem and progenitor cell harvesting: technical advances and clinical utility. J Blood Med. 2015;55.
58. Bacigalupo, A, Ballen, K, Rizzo, D, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15(12):1628–33.
59. Nash, RA. High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood. 2003;102(7):2364–72.
60. Samijn, JPA, te Boekhorst, PAW, Mondria, T, et al. Intense T cell depletion followed by autologous bone marrow transplantation for severe multiple sclerosis. J Neurol Neurosurg Psychiatry. 2006;77(1):4650.
61. Hawkey, CJ, Allez, M, Clark, MM, et al. Autologous Hematopoetic Stem Cell Transplantation for Refractory Crohn Disease. JAMA. 2015;314(23):2524.
62. Rice, CM, Mallam, EA, Whone, AL, et al. Safety and feasibility of autologous bone marrow cellular therapy in relapsing-progressive multiple sclerosis. Clin Pharmacol Ther. 2010;87(6):679–85.
63. Harrison, DM, Gladstone, DE, Hammond, E, et al. Treatment of relapsing–remitting multiple sclerosis with high-dose cyclophosphamide induction followed by glatiramer acetate maintenance. Mult Scler J. 2012;18(2):202–9.
64. Traboulsee, A, Arnold, D, Bar-Or, A, et al. Ocrelizumab No Evidence of Disease Activity (NEDA) status at 96 weeks in patients with relapsing multiple sclerosis: analysis of the Phase III double-blind, double-dummy, interferon beta-1a-controlled OPERA I and OPERA II studies (PL02.004). Neurology. 2016;86(Suppl. 16):PL02.004.
65. Mancardi, GL, Sormani, MP, Gualandi, F, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis A phase II trial. Neurology. 2015;84(10):981–8.
66. Muraro, PA, Pasquini, M, Atkins, HL, et al. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol. 2017;74(4):459.
67. Nash, RA, Hutton, GJ, Racke, MK, et al. High-Dose Immunosuppressive Therapy and Autologous Hematopoietic Cell Transplantation for Relapsing-Remitting Multiple Sclerosis (HALT-MS). JAMA Neurol. 2015;72(2):159.
68. Shevchenko, JL, Kuznetsov, AN, Ionova, TI. Long-term outcomes of autologous hematopoietic stem cell transplantation with reduced-intensity conditioning in multiple sclerosis: physician’s and patient’s perspectives. Ann Hematol. 2015;94(7):1149–57.
69. Muraro, PA, Douek, DC, Packer, A, et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med. 2005;201(5):805–16.
70. Gosselin, D, Rivest, S. Immune mechanisms underlying the beneficial effects of autologous hematopoietic stem cell transplantation in multiple sclerosis. Neurotherapeutics. 2011;8(4):643–49.
71. Dalla Costa, G, Martinelli, V, Sangalli, F, et al. Prognostic value of serum neurofilaments in patients with clinically isolated syndromes. Neurology. 2019;92(7):e733–41.
72. Janardhan, V, Bakshi, R. Quality of life in patients with multiple sclerosis: the impact of fatigue and depression. J Neurol Sci. 2002;205(1):5158.
73. Rottoli, M, La Gioia, S, Frigeni, B, Barcella, V. Pathophysiology, assessment and management of multiple sclerosis fatigue: an update. Expert Rev Neurother. 2017;17(4):373–9.
74. Raffel, J, Wallace, A, Gveric, D, Reynolds, R, Friede, T, Nicholas, R. Patient-reported outcomes and survival in multiple sclerosis: a 10-year retrospective cohort study using the Multiple Sclerosis Impact Scale–29. Basu S, editor. PLOS Med. 2017;14(7):e1002346.
75. Khurana, V, Sharma, H, Afroz, N, Callan, A, Medin, J. Patient-reported outcomes in multiple sclerosis: a systematic comparison of available measures. Eur J Neurol. 2017;24(9):1099–107.
76. Bose, G, Atkins, HL, Bowman, M, Freedman, MS. Autologous hematopoietic stem cell transplantation improves fatigue in multiple sclerosis. Mult Scler J. 2018;19.
77. Thebault, S, Tessier, D, Lee, H, et al. High serum neurofilament light chain normalises after haematopoietic stem cell transplant for Ms. Neurol – Neuroimmunol Neuroinflammation. 2019;6:e598.
78. Atkins, H. Stem cell transplantation to treat multiple sclerosis. JAMA. 2019;321(2):153.
79. Freedman, MS. ‘Time is brain’ also in multiple sclerosis. Mult Scler J. 2009;15(10):1133–34.

Keywords

Related content

Powered by UNSILO

Does Resetting the Immune System Fix Multiple Sclerosis?

  • Gauruv Bose (a1), Simon D. X. Thebault (a1), Harold L. Atkins (a2) and Mark S. Freedman (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.