Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 0.345 Render date: 2021-03-04T13:38:03.739Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Contralateral Motor Automatisms in Neocortical Temporal Lobe Epilepsy

Published online by Cambridge University Press:  02 December 2014

Seyed M. Mirsattari
Affiliation:
Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
Donald H. Lee
Affiliation:
Department of Radiology, University of Western Ontario, London, Ontario, Canada
Warren T. Blume
Affiliation:
Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
Rights & Permissions[Opens in a new window]

Abstract

Background:

The lateralizing value of the motor automatisms is generally doubted in most patients with temporal lobe epilepsy. However, subgroup analysis of the seizures of temporal lobe origin suggests a role for motor automatisms in discriminating seizures of neocortical versus mesial temporal lobe origin.

Methods:

Video-EEG of a patient with well-defined neocortical temporal lobe epilepsy was reviewed to assess the localizing value of motor automatisms.

Results:

We report a patient with left upper extremity motor automatisms and clonic movements of the proximal left lower extremity with altered awareness as the sole manifestations of right temporal neocortical seizures.

Conclusion:

Early onset unilateral motor automatisms without dystonic posturing can localize the seizure origin to the contralateral temporal lobe neocortex.

Type
Case Report
Copyright
Copyright © The Canadian Journal of Neurological 2004

References

1.Dupont, S, Semah, F, Boon, P, et al. Association of ipsilateral motor automatisms and contralateral dystonic posturing. Arch Neurol 1999; 56:927932.CrossRefGoogle Scholar
2.Chee, MWL, Kotagal, PVan Ness, PC, et al. Lateralizing signs in intractable partial epilepsy: blinded multiple-observer analysis. Neurology 1993; 43:25192525.CrossRefGoogle ScholarPubMed
3.Jasper, HH.Some physiological mechanisms involved in epileptic automatisms. Epilepsia 1964; 5:120.CrossRefGoogle ScholarPubMed
4.Bleasel, A, Kotagal, P, Kankirawatana, P, Rybicki, L.Lateralizing value and semiology of ictal limb posturing and version in temporal lobe and extratemporal epilepsy. Epilepsia 1997; 38:168174.CrossRefGoogle Scholar
5.Kotagal, P, Luders, H, Morris, HH, et al. Dystonic posturing in complex partial seizures of temporal lobe onset: a new lateralizing sign. Neurology 1989; 39:196201.CrossRefGoogle ScholarPubMed
6.Berkovic, SF, Bladin, PF.An electroclinical study of complex partial seizures [abstract]. Epilepsia 1984; 25:668669.Google Scholar
7.Wada, JA.Cerebral lateralization and epileptic manifestations. In: Akimoto, H, Kazamatsuri, H, Seino, M, Ward, AA, eds. Advances in Epileptology: XIIIth Epilepsy International Symposium. New York: Raven Press, 1982: 365372.Google Scholar
8.Marks, WJ Jr, Laxer, KD.Semiology of temporal lobe seizures: value in lateralizing the seizure focus. Epilepsia 1998; 39:721726.CrossRefGoogle ScholarPubMed
9.Serles, W, Pataraia, E, Bacher, J, et al. Clinical seizure lateralization in mesial temporal lobe epilepsy: differences between patients with unitemporal and bitemporal interictal spikes. Neurology 1998; 50:742747.CrossRefGoogle ScholarPubMed
10.Quesney, LF.Clinical and EEG features of complex partial seizures of temporal lobe origin. Epilepsia 1986; 27:S27-S45.CrossRefGoogle ScholarPubMed
11.Blume, WT, Luders, HO, Mizrahi, E, et al. Glossary of descriptive terminology for ictal semiology: report of the ILAE task force on classification and terminology. Epilepsia 2001; 42:12121218.CrossRefGoogle ScholarPubMed
12.Gil-Nagel, A, Risinger, MW.Ictal semiology in hippocampal versus extrahippocampal temporal lobe epilepsy. Brain 1997; 120:183192.CrossRefGoogle ScholarPubMed
13.Geier, S, Bancaud, J, Talairach, J, et al. Automatisms during frontal lobe epileptic seizures. Brain 1976; 99:447458.CrossRefGoogle ScholarPubMed
14.Talairach, J, Bancaud, J, Geier, S, et al. The cingulated gyrus and human behavior. Electroencephalogr Clin Neurophysiol 1973; 34:4552.Google Scholar
15.Rosene , DL, Van Hoesen, GW.Hippocampal efferents reach widespread areas of the cerebral cortex and amygdala in the rhesus monkey. Science 1977; 198:315317.CrossRefGoogle ScholarPubMed
16.Nauta, HJW.A simplified perspective on the basal ganglia and their relation to the limbic system. In: Doane, BK, Livingston, KE, (Eds). The Limbic System: Functional Organization and Clinical Disorders. New York: Raven Press, 1986: 6777.Google Scholar
17.Yang, CR, Mogenson, GJ.An electrophysiological study of the neural projections from the hippocampus to the ventral pallidum and the subpallidal areas by way of the nucleus accumbens. Neuroscience 1985; 15:10151024.CrossRefGoogle ScholarPubMed
18.Newton, MR, Berkovic, SF, Austin, MC, et al. Dystonia, clinical lateralization, and regional blood flow changes in temporal lobe seizures. Neurology 1992; 42:371377.CrossRefGoogle ScholarPubMed
19.Russchen, FT, Bakst, I, Amaral, DG.The amygdalostriatal projections in the monkey: an anterograde tracing study. Brain Res 1985;329:241257.CrossRefGoogle Scholar
20.Morris, HH, Kanner, A, Luders, H, et al. Can sharp waves localized at the sphenoidal electrode accurately identify a mesio-temporal epileptogenetic focus? Epilepsia 1989; 30:532539.Google Scholar
21.Risinger, MW, Engel, J Jr, Van Ness, PC, et al. Ictal localization in temporal lobe seizures with scalp/sphenoidal recordings. Neurology 1989; 39:12881293.CrossRefGoogle ScholarPubMed
22.Ebersole, JS, Wade, PD.Spike voltage topography identifies two types of frontotemporal epileptic foci. Neurology 1991; 41:14251433.CrossRefGoogle ScholarPubMed
23.Rowe, CC, Berkovic, SF, Austin, MC, et al. Patterns of postictal cerebral blood flow in temporal lobe epilepsy: quantitative and qualitative analysis. Neurology 1991: 41:10961103.CrossRefGoogle Scholar
24.Henry, TR, Sutherling, WW, Engel, J Jr, et al. Interictal cerebral metabolism in partial epilepsies of neocortical origin. Epilepsy Res 1991; 10:174182.CrossRefGoogle ScholarPubMed
25.Hajek, M, Antonini, A, Leenders, KL, Wieser, HG.Mesiobasal versus lateral temporal lobe epilepsy: metabolic differences in the temporal lobe shown by interictal 18F-FDG positron emission tomography. Neurology 1993; 43:7986.CrossRefGoogle ScholarPubMed
26.Wieser, HG.Discussion of 5 typical seizure constellation in the light of neuroanatomy. In: Wieser, HG.Electroclinical Features of the Psychomotor Seizure. Stuttgart-London: Gustav Fischer-Butterworths, 1983: 193208.Google Scholar
27.Walsh, GO, Delgado-Escueta, AV. Type II complex partial seizures: poor results of anterior temporal lobectomy. Neurology 1984;34:113.CrossRefGoogle Scholar
28.Delgado-Escueta, AV, Walsh, GO.Type I complex partial seizures of hippocampal origin: excellent results of anterior temporal lobectomy. Neurology 1985; 35:143154.CrossRefGoogle Scholar
29.Maldonado, HM, Delgado-Escueta, AV, Walsh, GO, et al. Complex partial seizures of hippocampal and amygdalar origin. Epilepsia 1988; 29:420433.CrossRefGoogle Scholar
30.Kotagal, P, Luders, HO, Williams, G, et al. Psychomotor seizures of temporal lobe onset: analysis of symptom clusters and sequences. Epilepsy Res 1995; 20:4967.CrossRefGoogle ScholarPubMed
31.Anand, I, Kotagal, P, Hammel, J, Mascha, E.Seizure semiology of lateral versus mesial temporal lobe epilepsy using statistical analysis. Neurology 1997; 48:A240-A241.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 5
Total number of PDF views: 120 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th March 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Contralateral Motor Automatisms in Neocortical Temporal Lobe Epilepsy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Contralateral Motor Automatisms in Neocortical Temporal Lobe Epilepsy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Contralateral Motor Automatisms in Neocortical Temporal Lobe Epilepsy
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *