Skip to main content Accessibility help
×
Home

Collateral Scoring on CT Angiogram Must Evaluate Phase and Regional Pattern

  • Colin Casault (a1), Abdulaziz S. Al Sultan (a1), Anurag Trivedi (a1), Sung Il Sohn (a2), Emmad Qazi (a1), Matthew Bokyo (a1), Mohammed Almekhlafi (a1) (a3) (a4), Christopher d’Esterre (a1), Mayank Goyal (a1) (a3), Andrew M. Demchuk (a1) (a3) and Bijoy K. Menon (a1) (a3) (a5)...

Abstract

Purpose: We measured anterior cerebral artery (ACA)-middle cerebral artery (MCA) and posterior cerebral artery (PCA)-MCA pial filling on single-phase computed tomography angiograms (sCTAs) in acute ischemic stroke and correlate with the CTA-based Massachusetts General Hospital (MGH) and digital subtraction angiography (DSA)-based American Society of Interventional and Therapeutic Neuroradiology (ASITN) score. Methods: Patients with acute stroke and M1 MCA±intracranial internal carotid artery occlusion on baseline CTA were included. Baseline sCTA was assessed for phase of image acquisition. An evaluator assessed collaterals using the Calgary Collateral (CC) Score (measures pial arterial filling in ACA-MCA and PCA-MCA regions separately), the CTA-based MGH score, and on DSA using the ASITN score. Infarct volumes were measured on 24- to 48-hour magnetic resonance imaging/ computed tomography. Results: Of 106 patients, baseline sCTA was acquired in early arterial phase in 9.9%, peak arterial in 50.7%, equilibrium in 32.4%, early venous in 5.6%, and late venous in 1.4%. Variance in ACA-MCA collaterals explained only 32% of variance in PCA-MCA collaterals on the CC score (Spearman’s correlation coefficient rho [rho]=0.56). Correlation between ACA-MCA collaterals and the MGH score was strong (rho=0.8); correlation between PCA-MCA collaterals and this score was modest (rho=0.54). Correlation between ACA-MCA collaterals and the ASITN score was modest (n=53, rho=0.43); and correlation between PCA-MCA collaterals and ASITN score was poor (rho=0.33). Of the CTA-based scores, the CC Score (Akaike [AIC] 1022) was better at predicting follow-up infarct volumes than was the MGH score (AIC 1029). Conclusion: Collateral assessments in acute ischemic stroke are best done using CTA with temporal resolution and by assessing regional variability. ACA-MCA and MCA-PCA collaterals should be evaluated separately.

La mesure de la circulation collatérale au moyen de l’angiographie par tomodensitométrie doit évaluer les phases de remplissage et la variabilité régionale du cerveau. Objectif: Nous avons mesuré le remplissage piale de l’artère cérébrale antérieure (ACA) à l’artère cérébrale moyenne (ACM), et de l’artère cérébrale postérieure (ACP) à l’ACM, au moyen d’une angiographie par tomodensitométrie à phase unique (single-phase) dans le cas de patients victimes d’un accident ischémique cérébral aigu. Nous avons ensuite corrélé nos résultats avec les scores obtenus à l’aide d’angiographies par tomodensitométrie au Massachusetts General Hospital (MGH) et d’angiographies numériques avec soustraction de l’American Society of Interventional and Therapeutic Neuroradiology (ASITN). Méthodes: Nous avons inclus des patients victimes d’un AVC aigu et d’une occlusion de la carotide interne intracrânienne M1 MCA ± détectés au moyen d’angiographies par tomodensitométrie servant de référence (baseline). Ces mêmes angiographies ont été ensuite évaluées lors de la phase d’acquisition des images. Un évaluateur a aussi analysé la circulation collatérale à l’aide du score Calgary Collateral (CC), lequel mesure séparément le remplissage artériel piale de l’ACA à l’ACM, et de l’ACP à l’ACM, et du score du MGH. Quant aux angiographies numériques avec soustraction, nous avons fait appel au score de l’ASITN. Le volume des infarctus a été mesuré au moyen de techniques d’imagerie par résonance magnétique et de tomographie par ordinateur, et ce, pendant 24 à 48 heures. Résultats: Sur 106 patients, les données des angiographies par tomodensitométrie ont été obtenues chez 9,9 % d’entre eux lors de la phase artérielle précoce; lors de la phase artérielle maximale, chez 50,7 % d’entre eux ; lors de la phase d’équilibre, chez 32,4 % d’entre eux ; lors de la phase veineuse précoce, chez 5,6 % d’entre eux; et enfin, lors de la phase veineuse tardive, chez 1,4 % d’entre eux. La variance de la circulation collatérale de l’ACA à l’ACM n’a expliqué que 32% de la variance de la circulation collatérale de l’ACP à l’ACM en lien avec le score CC (coefficient de corrélation de Spearman; rho = 0,56). La corrélation entre la circulation collatérale de l’ACA à l’ACM et le score du MGH s’est avérée marquée (rho = 0,8); la corrélation entre la circulation collatérale de l’ACP à l’ACM et ce même score s’est révélée plus faible (rho = 0,54). De son côté, la corrélation entre la circulation collatérale de l’ACA à l’ACM et le score de l’ASITN est apparue encore plus faible (n = 53; rho = 0,43) tandis que la corrélation entre la circulation collatérale de l’ACP à l’ACM et le score de l’ASITN (rho) n’a été que de 0,33. De tous les scores obtenus à l’aide d’angiographies par tomodensitométrie, le score CC (critère d’information d’Akaike ou AIC = 1022) a mieux réussi à prédire les volumes d’infarctus subséquents que celui du MGH (AIC = 1029). Conclusions: Il est préférable d’évaluer la circulation collatérale dans le cas d’accidents ischémiques cérébraux aigus au moyen d’angiographies par tomodensitométrie servant de référence, et ce, en fonction du temps et en analysant la variabilité régionale du cerveau. On devrait aussi évaluer séparément la circulation collatérale de l’ACA à l’ACM et celle de l’ACP à l’ACM.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Collateral Scoring on CT Angiogram Must Evaluate Phase and Regional Pattern
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Collateral Scoring on CT Angiogram Must Evaluate Phase and Regional Pattern
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Collateral Scoring on CT Angiogram Must Evaluate Phase and Regional Pattern
      Available formats
      ×

Copyright

Corresponding author

Correspondence to: Bijoy K. Menon, Department of Community Health Sciences, University of Calgary, 1079 A, 29th Street NW, Calgary, AB, Canada T3H4J2. Email: Bijoy.Menon@Albertahealthservices.ca

References

Hide All
1. Christoforidis, GA, Karakasis, C, Mohammad, Y, Caragine, LP, Yang, M, Slivka, AP. Predictors of hemorrhage following intra-arterial thrombolysis for acute ischemic stroke: the role of pial collateral formation. AJNR Am J Neuroradiol. 2009;30:165-170.
2. Demchuk, AM, Menon, B, Goyal, M. Imaging-based selection in acute ischemic stroke trials - a quest for imaging sweet spots. Ann N Y Acad Sci. 2012;1268:63-71.
3. Miteff, F, Levi, CR, Bateman, GA, Spratt, N, McElduff, P, Parsons, MW. The independent predictive utility of computed tomography angiographic collateral status in acute ischaemic stroke. Brain. 2009;132:2231-2238.
4. Souza, LC, Yoo, AJ, Chaudhry, ZA, et al. Malignant CTA collateral profile is highly specific for large admission DWI infarct core and poor outcome in acute stroke. AJNR Am J Neuroradiol. 2012;33:1331-1336.
5. Menon, BK, O’Brien, B, Bivard, A, et al. Assessment of leptomeningeal collaterals using dynamic ct angiography in patients with acute ischemic stroke. J Cereb Blood Flow Metab. 2013;33:365-371.
6. Garcia-Tornel, A, Carvalho, V, Boned, S, et al. Improving the evaluation of collateral circulation by multiphase computed tomography angiography in acute stroke patients treated with endovascular reperfusion therapies. Interv Neurol. 2016;5:209-217.
7. McVerry, F, Liebeskind, DS, Muir, KW. Systematic review of methods for assessing leptomeningeal collateral flow. AJNR Am J Neuroradiol. 2012;33:576-582.
8. Rodriguez-Luna, D, Dowlatshahi, D, Aviv, RI, et al. Venous phase of computed tomography angiography increases spot sign detection, but intracerebral hemorrhage expansion is greater in spot signs detected in arterial phase. Stroke. 2014;45:734-739.
9. Goyal, M, Demchuk, AM, Menon, BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019-1030.
10. Leng, X, Lan, L, Liu, L, Leung, TW, Wong, KS. Good collateral circulation predicts favorable outcomes in intravenous thrombolysis: a systematic review and meta-analysis. Eur J Neurol. 2016;23:1738-1749.
11. Tan, BY, Wan-Yee, K, Paliwal, P, et al. Good intracranial collaterals trump poor aspects (Alberta Stroke Program Early CT score) for intravenous thrombolysis in anterior circulation acute ischemic stroke. Stroke. 2016;47:2292-2298.
12. Brunner, F, Tomandl, B, Hanken, K, Hildebrandt, H, Kastrup, A. Impact of collateral circulation on early outcome and risk of hemorrhagic complications after systemic thrombolysis. Int J Stroke. 2014;9:992-998.
13. Menon, B, D’Esterre, C, Qazi, E, et al. Multiphase CT angiography- a new tool for the imaging triage of patients with acute ischemic stroke. Radiology. 2015;275:510-520.
14. Menon, BK, Smith, EE, Modi, J, et al. Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. AJNR Am J Neuroradiol. 2011;32:1640-1645.
15. Soares, BP, Tong, E, Hom, J, et al. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using ct in acute ischemic stroke patients. Stroke. 2010;41:e34-e40.
16. Arsava, EM, Vural, A, Akpinar, E, et al. The detrimental effect of aging on leptomeningeal collaterals in ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23:421-426.
17. Riva, M, Pappada, GB, Papadakis, M, et al. Hemodynamic monitoring of intracranial collateral flow predicts tissue and functional outcome in experimental ischemic stroke. Exp Neurol. 2012;233:815-820.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed