Skip to main content Accessibility help
×
Home

Callosal Atrophy Correlates with Temporal Lobe Volume and Mental Status in Alzheimer's Disease

  • Sandra E. Black (a1), Scott D. Moffat (a2), David C. Yu (a1), Jayson Parker, Peter Stanchev (a3) and Michael Bronskill (a4)...

Abstract

Background:

Recent studies have reported significant atrophy of the corpus callosum (CC) in Alzheimer's Disease (AD). However, it is currently unknown whether CC atrophy is associated with specific cortical volume changes in AD. Moreover, possible atrophy in extra-callosal commissures has not been examined to date. The purpose of the present study was to quantify atrophy in two cerebral commissures [the CC and the anterior commissure (AC)], to correlate this measure with cognitive status, and to relate commissural size to independent measures of temporal lobe volume in AD patients.

Methods:

A sample of AD patients and of age- and education-matched normal control subjects (NCs) underwent MRI and a cognitive test battery including the Dementia Rating Scale and Mini Mental State examination. Mid-sagittal regional areas within CC and AC were measured along with superior, middle and inferior temporal lobes volumes.

Results:

Alzheimer's Disease patients had significantly smaller callosa than did NCs. The callosal regions most affected in AD included the midbody, isthmus and genu. The isthmus and midbody areas of the CC were positively correlated with cognitive performance and with superior temporal lobe volume in AD patients. The mid-sagittal area of the AC and the superior temporal volumes did not differ between AD patients and NCs.

Conclusion:

The study demonstrated that the regional morphology of the CC correlates with current cognitive status and temporal lobe atrophy in AD. As well, the lack of difference for the AC suggests that commissural atrophy in AD is regionally specific.

RÉSUMÉ: Introduction:

Des édes réntes ont rapporténe atrophie significative du corps calleux (CC) dans la maladie d’Alzheimer (MA). Cependant, nous ne savons pas si l’atrophie du CC est associéàes changements spéfiques du volume cortical dans la MA. De plus, on n’a jamais examiné’il existait une atrophie des commissures extra-calleuses. Le but de cette éde éit de quantifier l’atrophie au niveau de deux commissures cébrales {le CC et la commissure antéeure (CA)}, de corrér cette mesure à’ét cognitif et de relier la taille commissurale àes mesures indéndantes du volume du lobe temporal chez des patients atteints de MA.

Méthodes et Résultats:

Un éantillon de patients atteints de la MA et de sujets contrô appariépour l’â et le niveau d’écation (CNs) ont subi une RMN et une éluation de la fonction cognitive au moyen de l’éelle de la dénce et du Mini-examen de l’ét mental. Les zones sagittales méanes du CC et la CA ont é mesuré ainsi que le volume des lobes temporaux supéeurs, moyens et inféeurs.

Réltats:

Les patients atteints de la MA avaient une mesure du CC significativement plus petite que les CNs. Les réons du CC les plus atteintes dans la MA comprenaient la partie moyenne du corps, l’isthme et le genou. L’isthme et la réon moyenne du CC éient positivement corrés àa performance cognitive et au volume du lobe temporal supéeur chez les patients atteints de la MA. La réon sagittale moyenne de la CA et les volumes temporaux supéeurs n’éient pas diffénts chez les patients atteints de la MA et les CNs.

Conclusions:

Cette éde déntre que la morphologie réonale du CC est corrée à’ét cognitif et à’atrophie du lobe temporal dans la MA. De plus, l’absence de diffénce au niveau de la CA suggè que l’atrophie commissurale dans la MA est spéfique àa réon.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Callosal Atrophy Correlates with Temporal Lobe Volume and Mental Status in Alzheimer's Disease
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Callosal Atrophy Correlates with Temporal Lobe Volume and Mental Status in Alzheimer's Disease
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Callosal Atrophy Correlates with Temporal Lobe Volume and Mental Status in Alzheimer's Disease
      Available formats
      ×

Copyright

References

Hide All
1. Tomasch, J. Size, distribution, and number of fibres in the human corpus callosum. Anat Rec 1954; 119: 119135.
2. Pandya, DN, Seltzer, B. The topography of commissural fibers. In: Lepor, F, Ptito, M, Jasper, HH, eds. Two Hemispheres – One Brain: Functions of the Corpus Callosum. New York: Alan R Liss Inc, 1986: 4773.
3. DeLacoste, MC, Kirkpatrick, JB, Ross, ED. Topography of the human corpus callosum. J Neuropath Exp Neurol 1985: 44: 578591.
4. Witelson, SF. Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 1989; 112: 799835.
5. Brun, A, Gustafson, L. Distribution of cerebral degeneration in Alzheimer’s disease: a clinico-pathological study. Arch Psych Neurol Sci 1976; 223: 1533.
6. Foster, N, Chase, TN, Mansi, L, et al. Cortical abnormalities in Alzheimer’s disease. Ann Neurol 1984; 16: 649654.
7. Haxby, JV, Grady, CL, Koss, E, et al. Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer’s type. Arch Neurol 1990; 47: 753760.
8. Lewis, DA, Campbell, MJ, Terry, RD, Morrison, JH. Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 1987; 7: 17991808.
9. Innocenti, GM. What is so special about callosal connections?. In: Lepor, F, Ptito, M, Jasper, HH, eds. Two Hemispheres – One Brain: Functions of the Corpus Callosum. New York: Alan R Liss Inc, 1986: 7581.
10. Wiess, S, Jellinger, K, Wenger, E. Morphometry of the corpus callosum in normal aging and Alzheimer’s Disease. J Neural Transm 1991; 33:3538.
11. Vermersch, P, Scheltens, P, Barkhorn, F, Steinling, M, Leys, D. Evidence for atrophy of the corpus callosum in Alzheimer–s disease. Eur Neurol 1993; 34: 8386.
12. Biegon, A, Eberling, JL, Richardson, BC, et al. Human corpus callosum in aging and Alzheimer’s disease: a magnetic resonance imaging study. Neurobiol Aging 1994; 15: 393397.
13. Lyoo, IK, Satlin, A, Lee, CK, Renshaw, PF. Regional atrophy of the corpus callosum in subjects with Alzheimer’s disease and multi-infarct dementia. Psych Res 1997; 74: 6372.
14. Yamauchi, H, Fukuyama, H, Harada, K, et al. Callosal atrophy parallels decreased cortical oxygen metabolism and neuropsychological impairment in Alzheimer’s disease. Arch Neurol 1993; 50: 10701074.
15. Janowsky, JS, Kaye, JA, Carper, RA. Atrophy of the corpus callosum in Alzheimer’s disease versus healthy aging. J Amer Ger Soc 1996; 44: 798803.
16. Kaufer, DI, Miller, BL, Itti, L, et al. Midline cerebral morphometry distinguishes frontotemporal dementia and Alzheimer’s disease. Neurology 1997;48: 978985.
17. Teipel, SJ, Hampel, H, Pietrini, P, et al. Region-specific corpus callosum atrophy correlates with the regional pattern of cortical glucose metabolism in Alzheimer disease. Arch Neurol 1999; 56:467473.
18. Teipel, SJ, Hampel, H, Alexander, GE, et al. Dissociation between corpus callosum atrophy and white matter pathology in Alzheimer’s disease. Neurology 1998; 51: 13811385.
19. Hampel, H, Teipel, SJ, Alexander, GE, et al. Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer’s disease. Arch Neurol 1998; 55: 193198.
20. Thompson, PM, Moussai, J, Zohoori, S, et al. Cortical variability and asymmetry in normal aging and Alzheimer’s disease. Cerebr Cortex 1998; 8: 492509.
21. Jouanet, ML, Gazzaniga, MS. Cortical field origin of the anterior commissure of the rhesus monkey. Exp Neurol 1979; 66: 381397.
22. Pandya, DN, Karol, EA, Lele, PP. The distribution of the anterior commissure in the squirrel monkey. Brain Res 1973; 49: 177180.
23. Brun, A, Englund, E. Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology 1981; 5: 549564.
24. McKhann, G, Drachman, D, Folstein, M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ARDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 1984; 34: 939944.
25. Mattis, S. Mental status examination for organic mental syndrome in the elderly patient. In: Bellak, L, Karasu, TB, eds. Geriatric Psychiatry: A Handbook for Psychiatrists and Primary Care Physicians. New York: Grune & Stratton, 1976: 77121.
26. Folstein, MF, Folstein, SE, McHugh, PR. “Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician. J Psych Res 1975; 12: 189198.
27. Talairach, J, Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain—3 - Dimensional Proportional System: An Approach to Cerebral Imaging. New York: Thieme Medical Publisher Inc., 1988.
28. Jack, CR Jr, Gehring, DG, Sharbrough, FW, et al. Temporal lobe volume measurement from MR images: accuracy and left-right asymmetry in normal persons. J Comput Assist Tomogr 1988;12:2129.
29. Kidron, D, Black, SE, Stanchev, P et al. Quantitative MR volumetry in Alzheimer’s disease. Neurology 1997; 49: 15041512.
30. Seltzer, B, Pandya, DN. The distribution of posterior parietal fibres in the corpus callosum of the rhesus monkey. Exp Brain Res 1983; 49: 147150.
31. Weiss, S, Kimbacher, M, Wenger, E, Neuhold, A. Morphometric analysis of the corpus callosum using MR: correlation of measurements with aging in healthy individuals. Am J Neuroradiol 1993; 14: 637645.
32. Driesen, NR, Raz, N. The influence of sex, age and handedness on corpus callosum morphology: a meta-analysis. Psychobiology 1995; 23: 240247.
33. Brun, A, Englund, E. A white matter disorder in dementia of the Alzheimer’s type: a pathoanatomical study. Ann Neurol 1986; 8: 421426.
34. Braak, H, Braak, E, Bohl, J. Staging of Alzheimer-related cortical destruction. Eur Neurol 1993; 33: 403408.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed