Skip to main content Accessibility help
×
Home

Acute Electrical Stimulation of Nucleus Ambiguus Enhances Immune Function in Rats

  • Ying-Wu Mei (a1), Zhan-Qing Yang (a1), Wei Wang (a1), De-Guang Song (a1), Xu-Ming Deng (a1) and Ju-Xiong Liu (a1)...

Abstract

Background:

Up to now, many “immunoactive” brain areas have been identified, such a hypothalamic nuclei, brain reward system; but the nucleus ambiguous (Amb), a nucleus nervi vagis of medulla oblongata, was less well studied in neuroimmunomodulation.

Methods:

In order to obtain more profound comprehension and more knowledge on Amb, we studied the effect of acute electrical stimulation of Amb on thymus and spleen activity in rat. A stimulator was applied to stimulate the Amb of the anaesthetic rats using the parameter at 100μAx5ms x100 Hz every 1s for 1 min. The levels of TGF-β and thymosin-β4 mRNA in thymus, the release of IL-2 and IL-6 at splenocyte in vitro and splenic lymphocyte proliferation were measured at hour 0.5,1,2,3 following the electrical stimulation.

Results:

The results showed that concanavalin A (Con A)-induced splenic lymphocyte proliferation and the release of IL-2 and IL-6 were all significantly enhanced at 0.5, 1, and 2 h following effective Amb stimulation as compared to in the control group. However, as compared to in the control group, the levels of TGF-β and thymosin-β4 mRNA in the thymus were both remarkably reduced at 0.5, 1, and 2 h following effective Amb stimulation.

Conclusions:

These findings reveal that the Amb participates in the modulation of animal immune functions.

RÉSUMÉ: Contexte:

Plusieurs zones immunoactives du cerveau ont ete identifiees jusqu’a maintenant, dont les noyaux hypothalamiques (corps de Luys, noyau sous–thalamique), le systeme de recompense du cerveau. Cependant, il existe peu d’etudes sur le role du noyau ambigu (Amb), le noyau du nerf vague situe dans le bulbe rachidien, dans la neuro–immunomodulation.

Méthodes:

Nous avons etudie l’effet de la stimulation electrique aigue de l’Amb sur l’activite du thymus et de la rate chez le rat afin de mieux connaitre et de comprendre le role de l’Amb. Un stimulateur a ete installe chez des rats anesthesies pour stimuler l’Amb. Le parametre utilise etait de 100µA x 5 ms x 100 Hz toutes les 1 s pendant 1 min. Les niveaux de TGF–β et d’ARNm de la thymosine β4 dans le thymus, la liberation d’IL–2 et d’IL–6 par des splenocytes in vitro et la proliferation lymphocytaire splenique ont ete mesures aux temps 0,5 h, 1 h, 2 h et 3 h apres la stimulation electrique.

Résultats:

La proliferation lymphocytaire splenique induite par la concanavaline A (Con A) et la liberation d’IL–2 et d’IL–6 etaient significativement augmentees aux temps 0,5 h, 1 h et 2 h apres une stimulation efficace de l’Amb par rapport au groupe temoin. Cependant, les niveaux de TGF–β et d’ARNm de la thymosine β dans le thymus etaient diminues de facon importante par rapport au groupe temoin aux temps 0,5 h, 1 h et 2 h

Conclusion:

Selon ces observation, l’Amb participe a la modulation des fonctions immunitaires chez l’animal.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Acute Electrical Stimulation of Nucleus Ambiguus Enhances Immune Function in Rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Acute Electrical Stimulation of Nucleus Ambiguus Enhances Immune Function in Rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Acute Electrical Stimulation of Nucleus Ambiguus Enhances Immune Function in Rats
      Available formats
      ×

Copyright

Corresponding author

College of Animal Science and Veterinary Medicine, JiLin University, 5333 Xi’an Road, Changchun, JiLin province, 130062, P.R.China.

References

Hide All
1. Dantzer, R. Innate immunity at the forefront of psychoneuroimmunology. Brain Behav Immun. 2004;18:16.
2. Jiang, CL, Lu, CL, Liu, XY. The molecular basis for bidirectional communication between the immune and neuroendocrine systems. Domest Anim Endocrinol. 1998;15:3639.
3. Madden, KS, Felten, DL. Experimental basis for neural-immune interactions. Physiol Rev. 1995;75:77106.
4. Haddad, JJ, Saade, NE, Safieh-Garabedian, B. Cytokines and neuroimmune-endocrine interactions: a role for the hypothalamicpituitary- adrenal revolving axis. J Neuroimmunol. 2002;133:119.
5. Berczi, I, Nagy, E. Effect of hypophysectomy on immune function. In: Ader, R, Felten, D, Cohen, N, editors. Psychoneuroimmunology, vol. 2. New York: Academic Press; 1991: p. 33775.
6. Madden, KS. Catecholamines, sympathetic innervation, and immunity. Brain Behav Immun. 2003;17 Suppl 1:S510.
7. Hori, T, Katafuchi, T, Take, S, Shimizu, N, Niijima, A. The autonomic nervous system as a communication channel between the brain and the immune system. Neuroimmunomodulation. 1995;2:20315.
8. Wrona, D. Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol. 2006;172:3858.
9. Bulloch, K, Moore, RY. Innervation of the thymus gland by brain stem and spinal cord in mouse and rat. Am J Anat. 1981;162:15766.
10. Paxinos, G, Watson, C. The rat brain in stereotaxic coordinates. 5th ed. San Diego (CA): Academic Press; 2005: p. 17383.
11. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:5563.
12. Whelan, JA, Russell, NB, Whelan, MA. A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods. 2003;278:2619.
13. Richards, GP, Watson, MA, Kingsley, DH. A SYBR green, real-time RT-PCR method to detect and quantitate Norwalk virus in stools. J Virol Methods. 2004;116:6370.
14. Baxevanis, CN, Reclos, GJ, Perez, S, Kokkinopoulos, D, Papamichail, M. Immunoregulatory effects of fraction 5 thymus peptides. I. Thymosin alpha 1 enhances while thymosin beta 4 suppresses the human autologous and allogeneic mixed lymphocyte reaction. Immunopharmacology. 1987;13:13341.
15. Low, TL, Hu, SK, Goldstein, AL. Complete amino acid sequence of bovine thymosin beta 4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci USA. 1981;78:11626.
16. Thurman, G, Low, T, Rossio, J, Goldstein, A. Specific and nonspecific macrophage migration inhibition. In: Goldstein, AL, Chiligos, MA, editors. Lymphokines and thymic hormones: Their potential utilization in cancer therapeutics. New York: NY; Raven. 1981: p. 145.
17. Sosne, G, Wheater, M, Qiu, P, Christopherson, P. Thymosin Beta 4 inhibits neutrophil production of cytokines after TNF-Alpha stimulation. Invest Ophthalmol Vis Sci. 2007;48:3649.
18. Nosaka KYaST, S. Vagal cardiac preganglionic neurons: distribution, cell types, and reflex discharges. Am J Physiol Regul Integr Comp Physiol. 1982;243:R928.
19. Ciriello, J, Calaresu, FR. Medullary origin of vagal preganglionic axons to the heart of the cat. J Auton Nerv Syst. 1982;5:922.
20. Spyer, MK. Neural organization and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol. 1981;88:23124.
21. Ciriello, J, Calaresu, FR. Distribution of vagal cardioinhibitory neurons in the medulla of the cat. Am J Physiol. 1980;238:R5764.
22. S Nosaka, TY, Yasunaga, K. Localization of vagal cardioinhibitory preganglionic neurons within rat brainstem. J Comp Neurol. 1979;186:7992.
23. Trotter, RN, Stornetta, RL, Guyenet, PG, Roberts, MR. Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. Auton Neurosci. 2007;131:920.
24. Niijima, A, Hori, T, Katafuchi, T, Ichijo, T. The effect of interleukin-1 beta on the efferent activity of the vagus nerve to the thymus. J Auton Nerv Syst. 1995;54:13744.
25. Nance, DM, Hopkins, DA, Bieger, D. Re-investigation of the innervation of the thymus gland in mice and rats. Brain Behav Immun. 1987;1:13447.
26. Klein, RL, Wilson, SP, Dzielak, DJ, Yang, WH, Viveros, OH. Opioid peptides and noradrenaline co-exist in large dense-cored vesicles from sympathetic nerve. Neuroscience. 1982;7:225561.
27. Sakai, K, Yoshimoto, Y, Luppi, PH, Fort, P, el Mansari, M, Salvert, D, et al. Lower brainstem afferents to the cat posterior hypothalamus: a double-labeling study. Brain Res Bull. 1990;24:43755.
28. Volz, HP, Rehbein, G, Triepel, J, Knuepfer, MM, Stumpf, H, Stock, G. Afferent connections of the nucleus centralis amygdalae. A horseradish peroxidase study and literature survey. Anat Embryol (Berl). 1990;181:17794.
29. Wild, JM, Arends, JJ, Zeigler, HP. Projections of the parabrachial nucleus in the pigeon (Columba livia). J Comp Neurol. 1990;293:499523.
30. Ciriello, J, McMurray, JC, Babic, T, de Oliveira, CV. Collateral axonal projections from hypothalamic hypocretin neurons to cardiovascular sites in nucleus ambiguus and nucleus tractus solitarius. Brain Res. 2003;991:13341.
31. Belluardo, N, Mudo, G, Bindoni, M. Effects of early destruction of the mouse arcuate nucleus by monosodium glutamate on agedependent natural killer activity. Brain Res. 1990;534:22533.
32. Hefco, V, Olariu, A, Hefco, A, Nabeshima, T. The modulator role of the hypothalamic paraventricular nucleus on immune responsiveness. Brain Behav Immun. 2004;18:15865.
33. Hefco, VP, Olariu, A, Neacsu, I, Isaicul, A. The ways through which the hypothalamic paraventricular nucleus (PVH) and the medial hypothalamus affect the organism’s defence function. Rom J Physiol. 1993;30:8791.
34. Esquifino, AI, Arce, A, Alvarez, MP, Chacon, F, Brown-Borg, H, Bartke, A. Differential effects of light/dark recombinant human prolactin administration on the submaxillary lymph nodes and spleen activity of adult male mice. Neuroimmunomodulation. 2004;11:11926.
35. Dorshkind, K, Horseman, ND. The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency. Endocr Rev. 2000;21:292312.
36. Kelley, KW. Growth hormone, lymphocytes and macrophages. Biochem Pharmacol. 1989;38:70513.
37. Whelan, JA, Russell, NB, Whelan, MA. A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods. 2003;278:2619.
38. Richards, GP, Watson, MA, Kingsley, DH. A SYBR green, real-time RT-PCR method to detect and quantitate Norwalk virus in stools. J Virol Methods. 2004;116:6370.

Acute Electrical Stimulation of Nucleus Ambiguus Enhances Immune Function in Rats

  • Ying-Wu Mei (a1), Zhan-Qing Yang (a1), Wei Wang (a1), De-Guang Song (a1), Xu-Ming Deng (a1) and Ju-Xiong Liu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed