Skip to main content Accessibility help
×
Home

Glioblastoma Recurrence Versus Treatment Effect in a Pathology-Documented Series

Published online by Cambridge University Press:  20 February 2020

Benjamin T. Himes
Affiliation:
Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
Andrea L. Arnett
Affiliation:
Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
Kenneth W. Merrell
Affiliation:
Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
Marcus J. Gates
Affiliation:
Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
Adip G. Bhargav
Affiliation:
Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
Aditya Raghunathan
Affiliation:
Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
Desmond A. Brown
Affiliation:
Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
Terry C. Burns
Affiliation:
Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
Ian F. Parney
Affiliation:
Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
Corresponding
E-mail address:

Abstract:

Objective:

Patients diagnosed with glioblastoma (GBM) are treated with surgery followed by fractionated radiotherapy with concurrent and adjuvant temozolomide. Patients are monitored with serial magnetic resonance imaging (MRI). However, treatment-related changes frequently mimic disease progression. We reviewed a series of patients undergoing surgery for presumed first-recurrence GBM, where pathology reports were available for tissue diagnosis, in order to better understand factors associated with a diagnosis of treatment-related changes on final pathology.

Methods:

Patient records at a single institution between 2005 and 2015 were retrospectively reviewed. Pathology reports were reviewed to determine diagnosis of recurrent GBM or treatment effect. Survival analysis was performed interrogating overall survival (OS) and progression-free survival (PFS). Correlation with radiation treatment plans was also examined.

Results:

One-hundred-twenty-three patients were identified. One-hundred-sixteen patients (94%) underwent resection and seven underwent biopsy. Treatment-related changes were reported in 20 cases (16%). These patients had longer median OS and PFS from the time of recurrence than patients with true disease progression. However, there was no significant difference in OS from the time of initial diagnosis. Treatment effect was associated with surgery within 90 days of completing radiation. In patients receiving radiation at our institution (n = 53), larger radiation target volume and a higher maximum dose were associated with treatment effect.

Conclusion:

Treatment effect was associated with surgery nearer to completion of radiation, a larger radiation target volume, and a higher maximum point dose. Treatment effect was associated with longer PFS and OS from the time of recurrence, but not from the time of initial diagnosis.

Résumé :

RÉSUMÉ :

Comparaison documentée entre des cas de récidive de glioblastome et les effets liés à des traitements.

Objectif :

Les patients à qui l’on a diagnostiqué un glioblastome (GBM) peuvent être traités par une chirurgie suivie, de façon simultanée, de séances fractionnées de radiothérapie et d’un traitement adjuvant au témozolomide. Le suivi des patients est ensuite effectué au moyen d’examens d’IRM. Cela dit, les changements à leur état de santé pouvant être liés à ces traitements se confondent fréquemment avec la progression de la maladie elle-même. Nous avons ainsi passé en revue les cas de patients ayant subi une intervention chirurgicale en lien avec une première récurrence présumée de GBM. Leurs rapports pathologiques étant disponibles, il a été possible d’effectuer un diagnostic tissulaire afin de mieux comprendre, dans le cas d’une pathologie finale, les facteurs associés à un diagnostic de changements à leur état de santé en lien avec un traitement.

Méthodes :

Nous avons passé en revue de façon rétrospective les dossiers de patients traités dans un seul établissement entre 2005 et 2015. Nous avons examiné leurs rapports pathologiques afin d’établir un diagnostic de GBM qui récidive ou les effets d’un traitement. Une analyse de la survie de ces patients a été ensuite menée en nous basant sur leurs taux de survie globale et leurs taux de survie sans aggravation (progression-free survival). À noter que nous avons également analysé les corrélations pouvant exister avec les séances de radiothérapie.

Résultats :

Au total, 123 patients ont été identifiés. De ce nombre, 116 avaient été soumis à une résection (94 %) alors que 7 avaient été soumis à une biopsie. Des changements à l’état de santé de ces patients en lien avec leurs traitements ont été signalés chez 16 % d’entre eux (n = 20). Ces derniers, soulignons-le, ont donné à voir des taux médians de survie globale et de survie sans progression plus élevés après une récidive que d’autres patients dont la progression de la maladie était réelle. Il convient toutefois de préciser qu’aucune différence notable n’a émergé en matière de taux de survie globale à partir d’un premier diagnostic. Mentionnons également que les effets des traitements sur les patients ont été associés à une intervention chirurgicale effectuée dans les 90 jours suivant la fin des séances de radiothérapie. Dans le cas de patients bénéficiant de telles séances au sein de notre établissement (n = 53), un volume de cible de rayonnement plus important ainsi qu’une dose maximale plus élevée ont été associés aux effets évoqués ci-dessus.

Conclusion :

En somme, les effets de traitements ont été associés à la chirurgie au moment où l’on se rapprochait de la fin des séances de radiothérapie mais aussi à des volumes de cible de rayonnement plus importants ainsi qu’à des doses maximales plus élevées. Ces mêmes effets de traitements ont été de surcroît associés à des taux de survie globale et de survie sans progression plus élevés à partir de la récidive des GBM et non pas à partir du moment où un premier diagnostic était posé.

Type
Original Article
Copyright
Copyright © 2020 The Canadian Journal of Neurological Sciences Inc.

Access options

Get access to the full version of this content by using one of the access options below.

References

Omuro, A, DeAngelis, LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310:1842–50.CrossRefGoogle ScholarPubMed
Stupp, R, Mason, WP, van den Bent, MJ, et al.Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefGoogle ScholarPubMed
Wen, PY, Macdonald, DR, Reardon, DA, et al.Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28:1963–72.10.1200/JCO.2009.26.3541CrossRefGoogle ScholarPubMed
Brandes, AA, Tosoni, A, Spagnolli, F, et al.Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol. 2008;10:361–7.CrossRefGoogle ScholarPubMed
Hygino da Cruz, LC Jr, Rodriguez, I, Domingues, RC, Gasparetto, EL, Sorensen, AG. Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol. 2011;32:1978–85.CrossRefGoogle ScholarPubMed
Eisenhauer, EA, Therasse, P, Bogaerts, J, et al.New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.CrossRefGoogle Scholar
Macdonald, DR, Cascino, TL, Schold, SC Jr, Cairncross, JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8:1277–80.10.1200/JCO.1990.8.7.1277CrossRefGoogle ScholarPubMed
Ellingson, BM, Chung, C, Pope, WB, Boxerman, JL, Kaufmann, TJ. Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J Neurooncol. 2017;134:495504.CrossRefGoogle ScholarPubMed
Yun, TJ, Park, CK, Kim, TM, et al.Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging. Radiology. 2015;274:830–40.CrossRefGoogle ScholarPubMed
Brandsma, D, Stalpers, L, Taal, W, Sminia, P, van den Bent, MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9:453–61.10.1016/S1470-2045(08)70125-6CrossRefGoogle ScholarPubMed
Tihan, T, Barletta, J, Parney, I, Lamborn, K, Sneed, PK, Chang, S. Prognostic value of detecting recurrent glioblastoma multiforme in surgical specimens from patients after radiotherapy: should pathology evaluation alter treatment decisions? Hum Pathol. 2006;37:272–82.CrossRefGoogle ScholarPubMed
Kucharczyk, MJ, Parpia, S, Whitton, A, Greenspoon, JN. Evaluation of pseudoprogression in patients with glioblastoma. Neuro-Oncol Pract. 2017;4:120–34.10.1093/nop/npw021CrossRefGoogle ScholarPubMed
Chamberlain, MC, Glantz, MJ, Chalmers, L, Van Horn, A, Sloan, AE. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol. 2007;82:81–3.CrossRefGoogle ScholarPubMed
Ellingson, BM, Wen, PY, van den Bent, MJ, Cloughesy, TF. Pros and cons of current brain tumor imaging. Neuro Oncol. 2014;16(Suppl 7):vii211.10.1093/neuonc/nou224CrossRefGoogle ScholarPubMed
Sanghera, P, Perry, J, Sahgal, A, et al.Pseudoprogression following chemoradiotherapy for glioblastoma multiforme. Can J Neurol Sci. 2010;37:3642.10.1017/S0317167100009628CrossRefGoogle ScholarPubMed
Kong, D-S, Kim, S, Kim, E-H, et al.Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. Am J Neuroradiol. 2011;32:382–87.CrossRefGoogle ScholarPubMed
Gahramanov, S, Muldoon, LL, Varallyay, CG, et al.Pseudoprogression of glioblastoma after chemo-and radiation therapy: diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival. Radiology. 2013;266:842–52.CrossRefGoogle ScholarPubMed
Young, RJ, Gupta, A, Shah, AD, et al.MRI perfusion in determining pseudoprogression in patients with glioblastoma. Clin Imaging. 2013;37:41–9.CrossRefGoogle ScholarPubMed
Galldiks, N, Dunkl, V, Stoffels, G, et al.Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18 F] fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging. 2015;42:685–95.10.1007/s00259-014-2959-4CrossRefGoogle ScholarPubMed
Okada, H, Weller, M, Huang, R, et al.Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. The Lancet Oncol. 2015;16:e53442.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 6
Total number of PDF views: 30 *
View data table for this chart

* Views captured on Cambridge Core between 20th February 2020 - 23rd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-86jzp Total loading time: 0.325 Render date: 2021-01-23T05:26:30.839Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Glioblastoma Recurrence Versus Treatment Effect in a Pathology-Documented Series
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Glioblastoma Recurrence Versus Treatment Effect in a Pathology-Documented Series
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Glioblastoma Recurrence Versus Treatment Effect in a Pathology-Documented Series
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *