Skip to main content Accessibility help
×
Home

Tractable Fields

Published online by Cambridge University Press:  20 November 2018


M. Chacron
Affiliation:
Department of Mathematics, Carleton University, Ottawa, Ontario, K1S 5B6
J.-P. Tignol
Affiliation:
Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain, Chemin du Cyclotron, 2, B-1348 Louvain-la-Neuve, Belgium email: tignol@agel.ucl.ac.be
A. R. Wadsworth
Affiliation:
Department of Mathematics, 0112, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112, USA email: arwadsworth@ucsd.edu
Corresponding

Abstract

A field $F$ is said to be tractable when a condition described below on the simultaneous representation of quaternion algebras holds over $F$ . It is shown that a global field $F$ is tractable iff $F$ has at most one dyadic place. Several other examples of tractable and nontractable fields are given.


Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1999

References

[ART] Amitsur, S., Rowen, L., and Tignol, J.-P., Division algebras of degree 4 and 8 with involution. Israel J. Math. 32 (1979), 133148.Google Scholar
[A] Artin, E., Algebraic Numbers and Algebraic Functions. Gordon and Breach, New York, 1967.Google Scholar
[Ar] Artin, M., Lipman's proof of resolution of singularities for surfaces. In: Arithmetic Geometry (Eds. Cornell, G. and Silverman, J.), Springer, New York, 1986, 267287.Google Scholar
[C] Chacron, M., Decomposing and ordering a certain crossed product. Comm. Alg. 21 (1993), 31973241.Google Scholar
[CDD] Chacron, M., Dherte, H., and Dixon, J. D., Certain valued involutorial division algebras of exponent 2 and small residue degree. Comm. Algebra 24 (1996), 757791.Google Scholar
[CTS] Colliot-Thélène, J.-L. and Saito, S., Zéro-cycles sur les variétés p-adiques et groupe de Brauer. Internat. Math. Res. Notices, 1996, 151160.Google Scholar
[DI] Demeyer, F. and Ingraham, E., Separable Algebras over Commutative Rings. Lecture Notes in Math. 181 , Springer, Berlin, 1971.CrossRefGoogle Scholar
[D] Draxl, P., Ostrowski's theoremfor Henselian valued skew fields. J. Reine Angew. Math. 354 (1984), 213218.Google Scholar
[DK] Draxl, P. and Kneser, M. (Eds.), SK1 von Schiefkörpern. Lecture Notes in Math. 778 , Springer, Berlin, 1980.CrossRefGoogle Scholar
[EL1] Elman, R. and Lam, T.-Y., Quadratic forms and the u-invariant. I. Math. Z. 131 (1973), 283304.Google Scholar
[EL2] Elman, R. and Lam, T.-Y., Quadratic forms under algebraic extensions. Math. Ann. 219 (1976), 2142.Google Scholar
[ELP] Elman, R., Lam, T.-Y., and Prestel, A., On some Hasse principles over formally real fields. Math. Z. 134 (1973), 291301.Google Scholar
[FSS] Fein, B., Saltman, D., and Schacher, M., Brauer-Hilbertian fields. Trans. Amer. Math. Soc. 334 (1992), 915928.Google Scholar
[FJ] Fried, M. and Jarden, M., Field Arithmetic. Springer, Berlin, 1986.CrossRefGoogle Scholar
[F] Fröhlich, A., Quadratic forms “à la” local theory. Proc. Cambridge Philos. Soc. 63 (1967), 579586.Google Scholar
[G] Greenberg, M. J., Lectures on Forms in Many Variables. Benjamin, New York, 1969.Google Scholar
[Gr] Grothendieck, A., Le groupe de Brauer I, II, III. In: Dix exposés sur la cohomologie des schémas (Eds. Grothendieck, A. and Kuiper, N.), North-Holland, Amsterdam, 1968, 46188.Google Scholar
[H] Han, I., Doctoral Thesis. Univ. of California, San Diego, in preparation.Google Scholar
[JW] Jacob, B. and Wadsworth, A., Division algebras over Henselian fields. J. Algebra 128 (1990), 126179.Google Scholar
[J] Jacobson, N., Basic Algebra I. Freeman, San Francisco, 1974.Google Scholar
[K] Kaplansky, I., Fröhlich's local quadratic forms. J. Reine Angew. Math. 239 (1969), 7477.Google Scholar
[L] Lam, T.-Y., The Algebraic Theory of Quadratic Forms (rev. edn). Benjamin, Reading Mass., 1980.Google Scholar
[Li] Lichtenbaum, S., Duality theorems for curves over P-adic fields. Invent. Math. 7 (1969), 120136.Google Scholar
[M] Milne, J., Étale Cohomology. Princeton Univ. Press, Princeton, NJ, 1980.Google Scholar
[OM] O’Meara, O. T., Introduction to Quadratic Forms. Springer, Berlin, 1963.CrossRefGoogle Scholar
[OS] Orzech, M. and Small, C., The Brauer Group of Commutative Rings. Dekker, New York, 1975.Google Scholar
[PY] Platonov, V. and Yanchevskii, V. I., Dieudonné's conjecture on the structure of unitary groups over a division ring, and Hermitian K-theory. Izv. Akad. Nauk SSSR, Ser. Mat. 48 (1984), 1266–1294. English trans., Math. USSR Izvestiya 25 (1985), 573599.Google Scholar
[Po] Pop, F., Galoissche Kennzeichnung p-adisch abgeschlossener Körper. J. Reine Angew. Math. 392 (1988), 145175.Google Scholar
[P] Prestel, A., Lectures on Formally Real Fields. Lecture Notes in Math. 1093 , Springer, Berlin, 1984.CrossRefGoogle Scholar
[Sa] Saito, S., Arithmetic on two dimensional local rings. Invent. Math. 85 (1986), 379414.Google Scholar
[S1] Saltman, D., The Brauer group and the center of generic matrices. J. Algebra 97 (1985), 5367.Google Scholar
[S2] Saltman, D., Division algebras over p-adic curves. J. Ramanujan Math. Soc. 12 (1997), 2547.Google Scholar
[Sch1] Scharlau, W., Über die Brauer-Gruppe eines algebraischen Funktionenkörpers in einer Variablen. J. Reine Angew. Math. 239/240 (1969), 16.Google Scholar
[Sch2] Scharlau, W., Quadratic and Hermitian Forms. Springer, Berlin, 1985.CrossRefGoogle Scholar
[Schi] Schilling, O. F. G., The Theory of Valuations. Amer. Math. Soc., Providence, RI, 1950.CrossRefGoogle Scholar
[Se] Serre, J.-P., Local fields (English trans. of Corps Locaux). Springer, New York, 1979.CrossRefGoogle Scholar
[T] Tate, J., Relations between K2 and Galois cohomology. Invent. Math. 36 (1976), 257274.Google Scholar
[W1] Wadsworth, A. R., p-Henselian fields: K-theory, Galois cohomology, and graded Witt rings. Pacific J. Math 105 (1983), 473496.Google Scholar
[W2] Wadsworth, A. R., Extending valuations to finite dimensional division algebras. Proc. Amer. Math. Soc. 98 (1986), 2022.Google Scholar
[We] Weiss, E., Algebraic Number Theory. Mc Graw-Hill, New York, 1963.Google Scholar
[Wi1] Witt, E., Über ein Gegenbeispiel zum Normensatz. Math. Z. 39 (1935), 462467.Google Scholar
[Wi2] Witt, E., Theorie der quadratischen Formen in beliebigen Körpern. J. Reine Angew. Math. 176 (1936), 3144.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 15 *
View data table for this chart

* Views captured on Cambridge Core between 20th November 2018 - 5th December 2020. This data will be updated every 24 hours.

Access
Hostname: page-component-b4dcdd7-bf5bq Total loading time: 0.328 Render date: 2020-12-05T09:48:08.159Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 09:01:07 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Tractable Fields
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Tractable Fields
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Tractable Fields
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *