Skip to main content Accessibility help
×
Home

Sur Les Anneaux de Groupes Semi-Parfaits

  • J. M. Goursaud (a1)

Extract

Soient A un anneau unitaire, G un groupe. L'anneau de groupe AG est le A-module libre ayant pour base les éléments de G, la multiplication étant définie par :

avec

Le premier résultat de cet article concerne les annulateurs des idéaux à gauche engendrés par les sous-groupes finis de G, il permet d'obtenir une démonstration facile de la caractérisation des anneaux de groupes parfaits à gauche.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sur Les Anneaux de Groupes Semi-Parfaits
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sur Les Anneaux de Groupes Semi-Parfaits
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sur Les Anneaux de Groupes Semi-Parfaits
      Available formats
      ×

Copyright

References

Hide All
1. Bass, H., Finistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466468.
2. Burgess, W. D., On semi-perfect group rings, Can. Math. Bull. 12 (1969), 645652.
3. Chamard, J. Y., Anneaux semi-parfaits et presque-frobenuisiens, C.R. Acad. Sci. Paris Sér. A-B 269 (1969), 556559.
4. Coleman, D. B., On group rings, Can. J. Math. 22 (1970), 249254.
5. Lambek, J., Lectures on rings and modules (Blaisdell, Waltham, Mass., 1966).
6. Passman, D. S., Infinite group rings (Marcel Dekker Inc., New York, 1971).
7. Renault, G., Sur les anneaux de groupes, C.R. Acad. Sci. Paris Sér. A-B 273 (1971), 8487.
8. Valette, J., Anneaux de groupes s emi-par faits, C.R. Acad. Sci. Paris Sér. A-B 273 (1971), 339341.
9. Woods, S., On perfect group rings, Proc. Amer. Math. Soc. 27 (1971), 4952.
10. Woods, S., On perfect and semi-perfect group rings, Ph. D. thesis, McGill University, Montréal, 1969.
11. Scott, W. R., Group theory, (Prentice-Hall, 1964).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Sur Les Anneaux de Groupes Semi-Parfaits

  • J. M. Goursaud (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed