Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-m4xc2 Total loading time: 0.255 Render date: 2021-04-21T02:49:55.463Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Subgradient Criteria for Monotonicity, The Lipschitz Condition, and Convexity

Published online by Cambridge University Press:  20 November 2018

F. H. Clarke
Affiliation:
Centre de recherches mathématiques Université de Montreal, Montreal, Québec H3C3J7
R. J. Stern
Affiliation:
Department of Mathematics and Statistics Concordia University Montreal, Quebec H4B 1R6
P. R. Wolenski
Affiliation:
Department of Mathematics Louisiana State University Baton Rouge, Louisiana, 70803 U.S.A.
Rights & Permissions[Opens in a new window]

Abstract

Let ƒ:H → (—∞,∞] be lower semicontinuous, where H is a real Hilbert space. An approach based upon nonsmooth analysis and optimization is used in order to characterize monotonicity of ƒ with respect to a cone, as well as Lipschitz behavior and constancy. The results, which involve hypotheses on the proximal subgradient π ƒ, specialize on the real line to yield classical characterizations of these properties in terms of the Dini derivate. They also give new extensions of these results to the multidimensional case. A new proof of a known characterization of convexity in terms of proximal subgradient monotonicity is also given.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1993

References

1. Boas, R.P., A Primer of Real Functions, Cams Mathematical Monographs 13, Mathematical Association of America, Rahway, 1960.Google Scholar
2. Borwein, J.M. and Preiss, D., A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Math. Soc. 303(1987), 517527.Google Scholar
3. Bruckner, A.M., Differentiation of Real Functions, Springer-Verlag 659, Berlin, 1978.CrossRefGoogle Scholar
4. Clarke, F.H., An indirect method in the calculus of variations, Trans. Amer. Math. Soc, in press.Google Scholar
5. Clarke, F.H., Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics 57, S.I.A.M., Philadelphia, 1989.Google Scholar
6. Clarke, F.H., Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983. Republished as Classics in Applied Mathematics 5, S.I.A.M., Philadelphia, 1990.Google Scholar
7. Clarke, F.H. and Redheffer, R.M., The proximal subgradient and constancy, Canad. Math. Bull. 36(1993. 3032.Google Scholar
8. Hobson, E.W., Functions of a Real Variable and the Theory of Fourier's Series, Cambridge University Press, Cambridge, 1907.Google Scholar
9. Loewen, P., Optimal Control via Nonsmooth Analysis, CRM Lecture Notes Series, Amer. Math. Soc, Summer School on Control, CRM, Université de Montréal, (1992), Amer. Math. Soc, Providence, 1993.Google Scholar
10. McShane, E.J., Integration, Princeton University Press, Princeton, 1944.Google Scholar
11. Poliqu'm, R.A., Subgradient monotonicity and convex functions, Nonlinear Analysis 15(1990), 305317.Google Scholar
12. Preiss, D., Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal 91 (1990), 312345.Google Scholar
13. Riesz, F. and Nagy, B.Sz., Functional Analysis, Ungar, New York, 1955.Google Scholar
14. Rockafellar, R.T., Clarke's tangent cones and boundaries of closed sets in Rn, Nonlinear Analysis 3(1979), 145154.Google Scholar
15. Saks, S., Theory of the Integral, Hafner, New York, 1937. L.C. Young, trans. Reprinted by Dover Press, 1964.Google Scholar
16. Treiman, J.S., Generalized gradients, Lipschitz behavior and directional derivatives, Can. J. Math. 37(1985), 1074.1084.Google Scholar
17. Zagrodny, D., Approximate mean value theorem for upper derivatives, Nonlinear Analysis 12(1988), 1413.1428.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 81 *
View data table for this chart

* Views captured on Cambridge Core between 20th November 2018 - 21st April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Subgradient Criteria for Monotonicity, The Lipschitz Condition, and Convexity
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Subgradient Criteria for Monotonicity, The Lipschitz Condition, and Convexity
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Subgradient Criteria for Monotonicity, The Lipschitz Condition, and Convexity
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *