Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T01:15:28.981Z Has data issue: false hasContentIssue false

Some Adjunction-Theoretic Properties of Codimension Two Non-Singular Subvarities of Quadrics

Published online by Cambridge University Press:  20 November 2018

Mark Andrea A. De Cataldo*
Affiliation:
Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, D-53225 Bonn, Germany e-mail: mde@math.wustl.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We make precise the structure of the first two reduction morphisms associated with codimension two non-singular subvarieties of non-singular quadrics Qn, n ≥ 5. We give a coarse classification of the same class of subvarieties when they are assumed not to be of log-general-type.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1997

References

1. Ando, T., On extremal rays of the higher dimensional varieties. Invent. Math. 81(1985), 347357.Google Scholar
2. Arrondo, E., Sols, I., On congruences of lines in the Projective Space. Soc. Mat. de France,Mémoire no 50, Suppl. au Bull. de la S. M. F., Tome 120, 1992. fascicule 3.Google Scholar
3. Barth, W., Submanifolds of low codimension in projective space. In: Proc. Intern. Cong. Math., Vancouver (1974), 409413.Google Scholar
4. Beltrametti, M.C., Biancofiore, A., Sommese, A.J., Projective n-folds of log-general type. I. Trans. Amer. Math. Soc. 314(1989), 825849.Google Scholar
5. Beltrametti, M.C., Fania, M.L., Sommese, A.J., On the adjunction theoretic classification of projective varieties. Math. Ann. 290(1991), 3162.Google Scholar
6. Beltrametti, M.C., Schneider, M.,Sommese, A.J., Special properties of the Adjunction Theory for threefolds in ℙ1. Memoirs of the AMS, vol. 116, no. 554, July 1995.Google Scholar
7. Beltrametti, M.C. and Sommese, A.J., The Adjunction Theory of complex projective varieties. Expositions in Mathematics, 398+xxi pages, Walter De Gruyter, Berlin, 16, 1995.Google Scholar
8. Beltrametti, M.C., Newproperties of special varieties arising from Adjunction Theory. J.Math. Soc. Japan, 43(1991), 381412.Google Scholar
9. Besana, G.M., On the geometry of conic bundles arising in Adjunction Theory. Math. Nachr. 160(1993), 223251.Google Scholar
10. Braun, R., Ottaviani, G., Schneider, M., Schreyer, F.-O., Classification of log-special 3-folds inP5. Preprint Bayreuth, 1992.Google Scholar
11. de Cataldo, M.A.A., Codimension two subvarieties of quadrics. Ph. D Thesis, The University of Notre Dame, 1995.Google Scholar
12. de Cataldo, M.A.A., The genus of curves on the three dimensional quadric. Nagoya Math. Journ., to appear.Google Scholar
13. de Cataldo, M.A.A., A finiteness theorem for low-codimensional subvarieties of quadrics. Trans. of the A.M.S., to appear.Google Scholar
14. de Cataldo, M.A.A., Codimension two subvarieties of quadrics: scrolls and classification in degree d≤ 10. Preprint, 1996.Google Scholar
15. Decker, W., Ein, L., Schreyer, F.-O., Construction of surfaces in P4. J. Alg. Geom. 2(1993), 185237.Google Scholar
16. Fujita, T., Classification Theories of Polarized Varieties. London Math. Soc. Lecture Note Ser. 155, Cambridge University Press, (1990).Google Scholar
17. Fulton, W., Intersection Theory. Ergeb. Math. Grenzgeb. (3) 2, Springer-Verlag, Berlin, 1984.Google Scholar
18. Gross, M., Surfaces of degree 10 in the Grassmannian of lines in 3-space. J. Reine Angew.Math. 436(1993), 87127.Google Scholar
19. Hartshorne, R., Algebraic Geometry. Graduate Texts in Math. 52, Springer-Verlag, New York, 1978.Google Scholar
20. Ionescu, P., Embedded projective varieties of small invariants, III. In: Algebraic Geometry, Proceedings of Conference on Hyperplane Sections, L’Aquila, Italy, 1988. (Eds. Sommese, A.J., Biancofiore, A., Livorni, L.E.), Lecture Notes in Math., 1417(1990), 138154. Springer-Verlag, New York.Google Scholar
21. Matsumura, H., Commutative Ring Theory. Cambridge studies in advanced mathematics, Cambridge University Press, 8, 1992.Google Scholar
22. Mori, S., Threefolds whose canonical bundle are not numerically effective. Ann. of Math. 116(1982), 132– 176.Google Scholar
23. Ottaviani, G., On threefolds in ℙ5 which are scrolls Ann. Scuola. Norm. Sup. Pisa Cl. Sci. Ser. (4) 19(1992), 451471.Google Scholar
24. Sommese, A.J., On the nonemptyness of the adjoint linear system of a hyperplane section of a threefold. J. Reine Angew. Math. 402(1989), 211220. Erratum. J. Reine Angew. Math. 411(1990), 122123.Google Scholar