Skip to main content Accessibility help
×
Home

Semi-classical Integrability, Hyperbolic Flows and the Birkhoff Normal Form

  • Michel Rouleux (a1)

Abstract

We prove that a Hamiltonian $p\in {{C}^{\infty }}({{T}^{*}}{{\mathbf{R}}^{n}})$ is locally integrable near a non-degenerate critical point ${{\rho }_{0}}$ of the energy, provided that the fundamental matrix at ${{\rho }_{0}}$ has rationally independent eigenvalues, none purely imaginary. This is done by using Birkhoff normal forms, which turn out to be convergent in the ${{C}^{\infty }}$ sense. We also give versions of the Lewis-Sternberg normal form near a hyperbolic fixed point of a canonical transformation. Then we investigate the complex case, showing that when $p$ is holomorphic near ${{\rho }_{0}}\in {{T}^{*}}{{\mathbf{C}}^{n}},$ then Re $p$ becomes integrable in the complex domain for real times, while the Birkhoff series and the Birkhoff transforms may not converge, i.e., $p$ may not be integrable. These normal forms also hold in the semi-classical frame.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Semi-classical Integrability, Hyperbolic Flows and the Birkhoff Normal Form
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Semi-classical Integrability, Hyperbolic Flows and the Birkhoff Normal Form
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Semi-classical Integrability, Hyperbolic Flows and the Birkhoff Normal Form
      Available formats
      ×

Copyright

References

Hide All
[AbMar] Abraham, R., Marsden, J., The foundations of mechanics. Benjamin, N.Y. Revised edition, 1978.
[AbRob] Abraham, R., Robbin, J. (with an Appendix by Kelley, A.), Transversal mappings and flows. Benjamin, New York, 1967.
[Ar] Arnold, V., Les méthodes mathématiques de la mécanique classique. Éditions Mir, Moscow, 1976.
[ArNo] Arnold, V., and Novikov, S., eds., Dynamical systems III-IV. Encyclopaedia of Mathematics. Springer-Verlag Berlin, 1988–1990.
[ArVaGo] Arnold, V., Varchenko, A., Goussein-Zadé, S., Singularités des applications différentiables I. Éditions Mir, Moscow, 1986.
[Au] Audin, M., Les systèmes Hamiltoniens et leur intégrabilité. Soc. Math. France 8(2001).
[BamGraPa] Bambusi, D., Graffi, S., Paul, Th., Normal forms and quantization formulae. Comm. Math. Phys. 207(1999) 173195.
[BaLlWa] Banyaga, A., de La Llave, R., Wayne, C., Cohomology equations near hyperbolic points and geometric versions of Sternberg linearization theorem. J. Geom. Anal. 690(1996), 613649,.
[BeKo1] Belitskii, G., Kopanskii, A., Sternberg theorem for equivariant Hamiltonian vector fields. Nonlinear Anal. 47(2001), 44914499,.
[BeKo2] Belitskii, G., Kopanskii, A., Sternberg-Chen theorem for equivariant Hamiltonian vector fields. In: Symmetry and perturbation theory III – SPT2001, Bambusi, D., Cadoni, M. and Gaeta, G. eds., World Scientific, River Edge, NJ, 2001.
[Bi] Birkhoff, G. D., Dynamical systems. Amer. Math. Soc. Colloquium Publ. 1927, revised ed. 1966.
[BrKo] Bronstein, I. and Kopanskii, A., Normal forms of vector fields satisfying certain geometric conditions. In: Nonlinear dynamical systems and chaos. Birkhäuser, Basel, 1996, pp. 79101.
[Bru] Bruhat, F., Travaux de Sternberg. Séminaire Bourbaki 6, (1995), 179196.
[Ch1] Chen, K.-T., Collected papers of K.-T. Chen, Birkhäuser Boston, Boston, MA, 2001.
[Ch2] Chen, K.-T., Equivalence and decomposition of vector fields about an elementary critical point. Amer. J. Math. 85(1963), 693722 (reprinted in [Ch1]).
[CuB] Cushman, R., Bates, L., Global aspects of classical integrable systems. Birkhäuser-Verlag, Basel, 1997.
[Ec] Ecalle, J., Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Hermann, Paris, 1992.
[El] Eliasson, L. H., Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case. Comment.Math. Helv. 65(1990), 435,.
[Fr] Franc¸oise, J. P., Propriétés de généricité des transformations canoniques. In: Geometric dynamics, Palis, J., ( ed.), Springer-Verlag, 1983, pp. 216260.
[Gal] Gallavotti, G., The Elements of mechanics. Springer-Verlag, New York, 1983.
[GeSj] Gérard, C. and Sjöstrand, J., Semiclassical resonances generated by a closed trajectory of hyperbolic type. Comm. Math. Phys. 108(1987), 391421, .
[GiDeFoGaSim] Giorgilli, A., Delsham, A., Fontich, E., Galgani, L. and Simò, C., Effective stability for a Hamiltonian system near an equilibrium point with an application to the restricted three-body problem. J. Differential Equations 77(1989), 167198,.
[Gr] Graff, S., On the conservation of hyperbolic tori for Hamiltonian systems. J. Differential Equations 15(1974), 169,
[GuSc] Guillemin, V. and Schaeffer, D., On a certain class of fuchsian partial differential equations. Duke Math. J. 44(1977), 157199,.
[Ha] Hartman, P., Ordinary differential equations. Wiley, New York, 1964.
[HeSj1] Helffer, B. and Sjöstrand, J., Multiple wells in the semi-classical limit III. Interaction through non-resonant wells. Math. Nachr. 124(1985), 263313.
[HeSj2] Helffer, B. and Sjöstrand, J., Semi-classical analysis for Harper's equation III. Soc. Math. France, Mém. (N.S.) 39(1989).
[HiPuSh] Hirsch, M., Pugh, C. and Shub, M., Invariant manifolds. Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin, 1977.
[IaSj] Iantchenko, A. and Sjöstrand, J., Birkhoff normal forms for Fourier integral operators II. Amer. J. Math. 124)2002), 817850.
[It] Ito, H., Integrable symplectic maps and their Birkhoff normal form. Tohoku Math. J. 49(1997), 73114.
[Iv] Ivrii, V., Microlocal analysis and precise spectral asymptotics. Springer-Verlag, Berlin, 1998.
[KaRo] Kaidi, N. and Rouleux, M., Quasi-invariant tori and semi-excited states for Schrödinger operators I. Asymptotics. Comm. Partial Differential Equations 27(2002), 16951750.
[M] Malliavin, P., Géométrie différentielle intrinsèque. Hermann, Paris, 1972.
[MaSo] Martinez, A. and Sordoni, V., Microlocal WKB expansions. J. Funct. Anal. 168(1999), 380402.
[MeSj] Melin, A. and Sjöstrand, J., Determinants of pseudo-differential operators and complex deformations of phase space. Methods Appl. Anal. 9(2002), 177237.
[Mo] Moser, J., On the generalization of a theorem of A. Lyapunoff. Comm. Pure Appl. Math. 11(1958), 257271, .
[Ne] Nelson, E., Topics in dynamics I: Flows. Princeton University Press, Princeton, NJ, 1969.
[Ro1] Rouleux, M., Quasi-invariant tori and semi-excited states for Schrödinger operators II. Tunneling. In preparation.
[Ro2] Rouleux, M., Integrability of an holomorphic Hamiltonian near a hyperbolic fixed point. In preparation.
[Si1] Siegel, C. L., Über die Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung. Nachr. Akad. Wiss. Göttingen (1952), 2130.
[Si2] Siegel, C. L., Über die Existenz einer Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung Math. Ann. 128(1954), 144170.
[SiMo] Siegel, C. L. and Moser, J., Lectures on celestial mechanics, Springer-Verlag, Berlin, 1971.
[Sie] Siegmund, S., Normal forms for nonautonomous differential equations. J. Differential Equations 178(2001), 541573.
[Sj1] Sjöstrand, J., Singularités analytiques microlocales. Astérisque 95(1982).
[Sj2] Sjöstrand, J., Analytic wavefront sets and operators with multiple characteristics. Hokkaido Math. J. 12(1983), 392433.
[Sj3] Sjöstrand, J., Semi-excited states in nondegenerate potential wells. Asymptotic Anal. 6(1992), 2943, .
[SjZw] Sjöstrand, J. and Zworski, M., Quantum monodromy and semiclassical trace formulae. J. Math. Pures Appl. 81(2002), 133.
[St] Sternberg, S., The structure of local diffeomorphisms III. Amer. J. Math. 81(1959), 578604.
[Vi] Vittot, M., Birkhoff expansions in Hamiltonian mechanics: a simplification of the combinatorics. In: Non-linear dynamics, Turchetti, G., (ed.) World Scientific, Teaneck, NJ, 1989, pp. 276286.
[Vu1] Vu Ngoc, S., Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités. Ph.D. Thesis, Université de Grenoble, 1998.
[Vu2] Vu Ngoc, S., On semi-global invariants for focus-focus singularities. Topology 42(2003), 365380.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Semi-classical Integrability, Hyperbolic Flows and the Birkhoff Normal Form

  • Michel Rouleux (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.