Skip to main content Accessibility help
×
Home

Periods and the Asymptotics of a Diophantine Problem II

  • Ben Lichtin (a1)

Extract

Let P(z 1,…, z n ) be a polynomial with positive coefficients. For positive x define A classical diophantine problem is to describe the asymptotic behavior of N 1(x) as x → ∞. More generally, one can introduce a second polynomial φ satisfying the condition (0.1) Sign φ (m) is constant for all m outside at most a finite subset of ℕ n .

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Periods and the Asymptotics of a Diophantine Problem II
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Periods and the Asymptotics of a Diophantine Problem II
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Periods and the Asymptotics of a Diophantine Problem II
      Available formats
      ×

Copyright

References

Hide All
[Be] Bernstein, J.N., The analytic continuation of generalized functions with respect to a parameter, Functional Analysis and Applications. 6(1972), 2640.
[Bro-1] Broughton, S.A., On the topology of polynomial hyper surfaces, Proc. of Symp. in Pure Math. 40 part 1 (1983), 167178.
[Bro-2] Broughton, S.A.,Milnor numbers and the topology of polynomial hypersurfaces,Inv. Math. 92(1988), 217241.
[Bro-3] Broughton, S.A., On the topology of polynomial hypersurfaces. Thesis at Queen's University, 1982.
[C-N] Cassou-Nogues, P., Valeurs aux entiers négatifs des series de Dirichlet associées à un polynome II, Amer. J. Math. 106(1985), 255299.
[Da-Kh] Danilov, V. I. and Khovanski, A.G., Newton polyhedra and an algorithm for computing Hodge- Deligne numbers, Math. USSR Izves. 29(1987), 279299.
[Dav] Davenport, H., Analytic methods for diophantine equations and diophantine inequalities. University of Michigan lecture notes, 1962.
[De] Deligne, P., Equations différentielles à Points Singuliers Réguliers. Lecture Notes in Mathematics 163, Springer-Verlag, 1970.
[Gin] Gindikin, S.G., Energy estimates involving the Newton polyhedron,Trans, . Moscow Math. Soc. 31(1974), 193245.
[Gr] Griffithsom, P.A. results on moduli and periods of integrals on algebraic manifolds. Mimeographed Princeton U. notes, 1968.
[He] Herrera, M., Integration on a semi-analytic set, Bull. Soc. Math. France 94(1966), 141180.
[Hoo]Hooley, C.,Orc Waring's Problem, ActaMathematica 157(1986),4997.
[Ku] Kushinirenko, A., Polyèdres de Newton et nombres de Milnor, Inv. Math. 32(1976), 132.
[Li-1] Lichtin, B., GeneralizedDirichlet series and B-functions, Compositio Math. 65(1988), 81120.
[Li-2] Lichtin, B., Periods and the asymptotics of a diophantine Problem, (to appear in Arkiv fur Mathematik).
[Li-3] Lichtin, B., The asymptotics of a lattice point problem determined by a hypoelliptic polynomial, (to appear).
[Lo] Lojasiewicz, S., Triangulation of semi-analytic sets, Ann. Scuola Normale sup. de Pisa 3rd series, 18 (1964), 449474.
[Ma-1] Malgrange, B., Intégrales asymptotiques et monodromie, Ann. Scient. Ec. Norm. Sup. 7(1974), 405430.
[Ma-2] Malgrange, B. ,Méthode de la phase stationnaire et sommation de Borel, Complex Analysis, Microlocal Calculus, and Relativistic Quantum Field Theory, Lecture Notes in Physics, Springer-Verlag 126, 1980.
[Nil] Nilsson, N., Some growth and ramification properties of certain integrals on algebraic manifolds, Arkiv fur Mathematik 5(1965), 463475.
[P-l] Pham, F., Vanishing homologies and the n-variable saddlepoint method, Proc. Symp. in Pure Math 40, part 2 (1983), 319334.
[P-2] Pham, F. ,La descente des cols par les onglets de Lefschetz avec vues sur Gauss-Manin, Astérisque 130(1985), 1147.
[Sa-1] Sargos, P., Prolongement meromorphe des séries de Dirichlet associées a des fractions rationelles de plusieurs variables, Ann. Inst. Fourier 33(1984), 82123.
[Sa-2] Sargos, P.,Croissance de certaines séries de Dirichlet et applications, J. fur die reine und angewandte Mathematik 367(1986), 139154.
[Sa-3] Sargos, P., Series de Dirichlet et polyèdres de Newton. These d'Etat, Université de Bordeaux, 1986.
[Spa] Spanier, E., Algebraic Topology. McGraw-Hill, 1966.
[Va] Vaughn, R.C., The Hardy-Littlewood Method. Cambridge Univ. Press, 1981.
[Var] Varcenko, A.N., Zeta function of monodromy and Newton diagrams, Inv. Math. 37(1976), 253262.
[Ve] Verdier, J.-L., Stratifications de Whitney et Théorème de Bertini-Sard, Inv. Math. 36(1976), 295312.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Periods and the Asymptotics of a Diophantine Problem II

  • Ben Lichtin (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed