Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-kl86h Total loading time: 3.981 Render date: 2021-04-11T07:30:51.494Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

On the Equivariant Formality of Kähler Manifolds With Finite Group Action

Published online by Cambridge University Press:  20 November 2018

Benjamin L. Fine
Affiliation:
Department of Mathematics Indiana University Bloomington, Indiana 47405 U.S.A.
Georgia Triantafillou
Affiliation:
Department of Mathematics University of Chicago, Chicago, Illinois 60637 USA.
Rights & Permissions[Opens in a new window]

Abstract

An appropriate definition of equivariant formality for spaces equipped with the action of a finite group G, and for equivariant maps between such spaces, is given. Kahler manifolds with holomorphic G-actions, and equivariant holomorphic maps between such Kàhler manifolds, are proven to be equivariantly formal, generalizing results of Deligne, Griffiths, Morgan, and Sullivan

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1993

References

[B] Bredon, G.E., Equivariant Cohomology Theories, Lecture Notes in Math. 34, Springer-Verlag, Berlin, Heidelberg and New York, 1967.CrossRefGoogle Scholar
[DGMS] Deligne, P., Griffiths, P., Morgan, J. and Sullivan, D., Real Homotopy Theory of Kàhler Manifolds, Inv. Math. 29(1975. 245274.Google Scholar
[H] Humphreys, J., Linear Algebraic Groups, Grad. Texts in Math. 21, Springer Verlag, New York Heidelberg Berlin, 1975.CrossRefGoogle Scholar
[HS] Halperin, S. and Stasheff, J., Obstructions to homotopy equivalences, Advances in Math. 32(1979), 233279.Google Scholar
[L] Lambre, T., Homotopie équivariante et formalité, C.R. Acad. Sci. Pans, t. (I) 309(1989. 5557.Google Scholar
[L2] Lambre, T., Modèle minimal équivariant et formalité, Trans. Amer. Math. Soc, to appear.Google Scholar
[M] Miller, T., On the formality of(k — 1)-connected compact manifolds of dimension less or equal to 4k — 2, Illinois J. Math. 23(1979), 253258.Google Scholar
[RT] Rothenberg, M. and Triantafillou, G., On the classification of G-manifold s up to finite ambiguity, Communications in Pure and Applied Mathematics XLIV(1991), 733759.Google Scholar
[RT2] Rothenberg, M. and Triantafillou, G., On the formality of the equivariant classifying space BU﹛ct), preprint, 1991.Google Scholar
[S] Sullivan, D., Infinitesimal computations in topology, Publ. Math. IHES 47(1978), 269331.Google Scholar
[Se] Serre, J.-P, Cohomologie Galoisienne, Lecture Notes in Math. 5, Springer Verlag, Berlin Heidelberg NewYork, 1965.CrossRefGoogle Scholar
[T] Triantafillou, G., Equivariant minimal models, Trans. Amer. Math. Soc. (2) 274(1982), 509532.Google Scholar
[T2] Triantafillou, G., An algebraic model for G-homotopy types, Astérisque 113-114(1984), 312337.Google Scholar
[T3] Triantafillou, G., Rationalization ofHopfG-spaces, Math. Zeit. 182(1983), 485500.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 26 *
View data table for this chart

* Views captured on Cambridge Core between 20th November 2018 - 11th April 2021. This data will be updated every 24 hours.

Access Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the Equivariant Formality of Kähler Manifolds With Finite Group Action
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the Equivariant Formality of Kähler Manifolds With Finite Group Action
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the Equivariant Formality of Kähler Manifolds With Finite Group Action
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *