Skip to main content Accessibility help
×
Home

On Computable Field Embeddings and Difference Closed Fields

  • Matthew Harrison-Trainor (a1), Alexander Melnikov (a2) and Russell Miller (a3)

Abstract

We investigate when a computable automorphism of a computable field can be effectively extended to a computable automorphism of its (computable) algebraic closure. We then apply our results and techniques to study effective embeddings of computable difference fields into computable difference closed fields.

Copyright

References

Hide All
[Bab62] Babbitt, Albert E., Jr., Finitely generated pathological extensions of difference fields. Trans. Amer. Math. Soc. 102(1962), 6381.http://dx.doi.org/10.1090/S0002-9947-1962-0133326-0
[Bes40] Besicovitch, Abram S.,On the linear independence of fractional powers of integers. J. London Math. Soc. 15(1940), 36,. http://dx.doi.Org/10.1112/jlms/sl -15.1.3
[CH99] Chatzidakis, Zoé and Hrushovski, Ehud, Model theory of difference fields. Trans. Amer. Math. Soc. 351(1999), no. 8, 29973071.http://dx.doi.org/10.1090/S0002-9947-99-02498-8
[Cle70] Cleave, John P. , Some properties of recursively inseparable sets. Z. Math. Logik Grundlagen Math. 16(1970), 187200.http://dx.doi.Org/10.1002/malq.1 9700160208
[Coh52] Cohn, Richard M., Extensions of difference fields. Amer. J. Math. 74(1952) 507530. http://dx.doi.Org/10.2307/2372012
[Coh65] Cohn, Richard M., Difference algebra. Interscience Publishers John Wiley & Sons, New York, 1965.
[DHS13] Dorais, Franois G., Jeffry Hirst, and Paul Shafer, Reverse mathematics and algebraic field extensions. Computability 2(2013), no. 2, 7592.
[Eva73] Evanovich, Peter, Algebraic extensions of difference fields. Trans. Amer. Math. Soc. 179(1973), 122.http://dx.doi.org/10.1090/S0002-9947-1973-0314809-4
[FJ08] Fried, Michael D.and Jarden, Moshe, Field arithmetic. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, 11. Springer-Verlag, Berlin, 2008.
[FSS83] Friedman, Harvey M., Simpson, Stephen G., and Smith, Rick L., Countable algebra and set existence axioms. Ann. Pure Appl. Logic 25(1983), no. 2,141181.http://dx.doi.Org/10.1016/0168-0072(83)90012-X
[Gou89] Goursat, Edouard, Sur les substitutions orthogonales et les divisions réguli ères de l'espace. Ann. Sci. Ècole Norm. Sup. (3) 6(1889), 9102.
[Har74] Harrington, Leo, Recursively presentable prime models. J. Symbolic Logic 39(1974), 305309.http://dx.doi.org/10.2307/2272643
[Har98] Harizanov, Valentina S., Pure computable model theory. In: Handbook of recursive mathematics, Vol. 1. Stud. Logic Found. Math., 138. North-Holland, Amsterdam, 1998, pp. 3114.
[HTMM15] Harrison-Trainor, Matthew, Alexander Melnikov, and Antonio Montalbân, Independence in computable algebra. J. Algebra 443(2015), 441468. http://dx.doi.Org/10.101 6/j.jalgebra.2O1 5.06.004
[Kro82] Kronecker, Leopold, Grundzuge einer arithmetischen Théorie der algebraischen Grofien. J. Reine Angew. Math. 92(1882), 1122.http://dx.doi.Org/10.1515/crll.1882.92.1
[Mac97] Macintyre, Angus, Generic automorphisms of fields. Ann. Pure Appl. Logic 88(1997), no. 2-3,165180. http://dx.doi.Org/1 0.1016/S0168-0072(97)00020-1
[Mal61] Mal'cev, Anatoly I.. Constructive algebras. I. Uspehi Mat. Nauk 16(1961), no. 3 (99),360.
[Mil83] Millar, Terrence, Omitting types, type spectrums, and decidability. J. Symbolic Logic 48(1983), no. 1,171181.http://dx.doi.org/10.2307/2273331
[MilO8] Miller, Russell, Computable fields and Galois theory. Notices Amer. Math. Soc. 55(2008), no. 7, 798807.
[Mor53] Mordell, Louis J., On the linear independence of algebraic numbers. Pacific J. Math. 3(1953), 625630.http://dx.doi.Org/10.2140/pjm.1953.3.625
[Rab60] Rabin, Michael O., Computable algebra, general theory and theory of computable fields. Trans. Amer. Math. Soc. 95(1960), 341360.
[vdW70] van der Waerden, Bartel L., Algebra. Vol 1. Frederick Ungar, New York ,1970.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed