Skip to main content Accessibility help

On Computable Field Embeddings and Difference Closed Fields

  • Matthew Harrison-Trainor (a1), Alexander Melnikov (a2) and Russell Miller (a3)


We investigate when a computable automorphism of a computable field can be effectively extended to a computable automorphism of its (computable) algebraic closure. We then apply our results and techniques to study effective embeddings of computable difference fields into computable difference closed fields.



Hide All
[Bab62] Babbitt, Albert E., Jr., Finitely generated pathological extensions of difference fields. Trans. Amer. Math. Soc. 102(1962), 6381.
[Bes40] Besicovitch, Abram S.,On the linear independence of fractional powers of integers. J. London Math. Soc. 15(1940), 36,. http://dx.doi.Org/10.1112/jlms/sl -15.1.3
[CH99] Chatzidakis, Zoé and Hrushovski, Ehud, Model theory of difference fields. Trans. Amer. Math. Soc. 351(1999), no. 8, 29973071.
[Cle70] Cleave, John P. , Some properties of recursively inseparable sets. Z. Math. Logik Grundlagen Math. 16(1970), 187200.http://dx.doi.Org/10.1002/malq.1 9700160208
[Coh52] Cohn, Richard M., Extensions of difference fields. Amer. J. Math. 74(1952) 507530. http://dx.doi.Org/10.2307/2372012
[Coh65] Cohn, Richard M., Difference algebra. Interscience Publishers John Wiley & Sons, New York, 1965.
[DHS13] Dorais, Franois G., Jeffry Hirst, and Paul Shafer, Reverse mathematics and algebraic field extensions. Computability 2(2013), no. 2, 7592.
[Eva73] Evanovich, Peter, Algebraic extensions of difference fields. Trans. Amer. Math. Soc. 179(1973), 122.
[FJ08] Fried, Michael D.and Jarden, Moshe, Field arithmetic. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, 11. Springer-Verlag, Berlin, 2008.
[FSS83] Friedman, Harvey M., Simpson, Stephen G., and Smith, Rick L., Countable algebra and set existence axioms. Ann. Pure Appl. Logic 25(1983), no. 2,141181.http://dx.doi.Org/10.1016/0168-0072(83)90012-X
[Gou89] Goursat, Edouard, Sur les substitutions orthogonales et les divisions réguli ères de l'espace. Ann. Sci. Ècole Norm. Sup. (3) 6(1889), 9102.
[Har74] Harrington, Leo, Recursively presentable prime models. J. Symbolic Logic 39(1974), 305309.
[Har98] Harizanov, Valentina S., Pure computable model theory. In: Handbook of recursive mathematics, Vol. 1. Stud. Logic Found. Math., 138. North-Holland, Amsterdam, 1998, pp. 3114.
[HTMM15] Harrison-Trainor, Matthew, Alexander Melnikov, and Antonio Montalbân, Independence in computable algebra. J. Algebra 443(2015), 441468. http://dx.doi.Org/10.101 6/j.jalgebra.2O1 5.06.004
[Kro82] Kronecker, Leopold, Grundzuge einer arithmetischen Théorie der algebraischen Grofien. J. Reine Angew. Math. 92(1882), 1122.http://dx.doi.Org/10.1515/crll.1882.92.1
[Mac97] Macintyre, Angus, Generic automorphisms of fields. Ann. Pure Appl. Logic 88(1997), no. 2-3,165180. http://dx.doi.Org/1 0.1016/S0168-0072(97)00020-1
[Mal61] Mal'cev, Anatoly I.. Constructive algebras. I. Uspehi Mat. Nauk 16(1961), no. 3 (99),360.
[Mil83] Millar, Terrence, Omitting types, type spectrums, and decidability. J. Symbolic Logic 48(1983), no. 1,171181.
[MilO8] Miller, Russell, Computable fields and Galois theory. Notices Amer. Math. Soc. 55(2008), no. 7, 798807.
[Mor53] Mordell, Louis J., On the linear independence of algebraic numbers. Pacific J. Math. 3(1953), 625630.http://dx.doi.Org/10.2140/pjm.1953.3.625
[Rab60] Rabin, Michael O., Computable algebra, general theory and theory of computable fields. Trans. Amer. Math. Soc. 95(1960), 341360.
[vdW70] van der Waerden, Bartel L., Algebra. Vol 1. Frederick Ungar, New York ,1970.
MathJax is a JavaScript display engine for mathematics. For more information see



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed