Skip to main content Accessibility help
×
Home

Notes on Extensions of Hopf Algebras

  • Nicolás Andruskiewitsch (a1) (a2) and Ruskie Witsch (a2)

Abstract

This article contains examples and applications of the notion of exact sequences of Hopf algebras.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Notes on Extensions of Hopf Algebras
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Notes on Extensions of Hopf Algebras
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Notes on Extensions of Hopf Algebras
      Available formats
      ×

Copyright

References

Hide All
[A] Andruskiewitsch, N., Some exceptional compact matrix pseudogroups, Bull. Soc. Math. France 120(1992), 297325.
[AD] Andruskiewitsch, N. and Devoto, J., Extensions of Hopf algebras, Algebra i Analiz (1) 7(1995), 2261.
[BCM] Blattner, R.J., Cohen, M. and Montgomery, S., Crossed products and inner actions of Hopf algebras, Trans. Amer. Math. Soc. 298(1986), 671711.
[BM] Blattner, R.J. and Montgomery, S., Crossed products and Galois extensions of Hopf algebras, Pacific J. Math. 137(1989), 3754.
[Bou] Bourbaki, N., Groupes et algébres de Lie. Chapitres 4, 5 et 6 Hermann, Paris, 1968.
[Br] Brown, K.S., Cohomology of groups. Graduate Texts in Math. 87, Springer, Berlin, Heidelberg, New York, 1982.
[By] Byott, N.P., Cleft extensions of Hopf algebras, J. Algebra 157(1993), 405429.
[By2] Byott, N.P., Cleft extensions of Hopf algebras II, Proc. London Math. Soc. (3) 67(1993), 277304.
[CE] Cartan, H. and Eilenberg, S., Homological algebra. Princeton Univ. Press, 1956.
[CM] Chin, W. and Musson, I., The coradical filtration for quantized enveloping algebras, 1994. preprint.
[Ci] Cibils, C., A quiver quantum group, Comm. Math. Phys. 157(1993), 459477.
[dCKP] de Concini, C., Kac, V.G. and Procesi, C., Quantum coadjoint action, J. Amer. Math. Soc. 5, 151189.
[dCL] de Concini, C. and Lyubashenko, V., Quantum Function algebra at roots of, Adv. Math. 108(1994), 205261.
[dCP] de Concini, C. and Procesi, C., Quantum Groups, Matem. 6, Scuola Norm. Sup. Pisa, (1993), preprint.
[DG] Demazure, M. and Gabriel, P., Groupes algèbriques. Masson & Cie, Paris, 1970.
[DT] Doi, Y. and Takeuchi, M., Cleft comodule algebras for a bialgebra, Comm. Algebra 14(1986), 801818.
[Dr] Drinfeld, V.G., Quantum groups. Proc. of the ICM, Berkeley, 1986. 798820.
[Gr] Greither, C., Extensions of finite group schemes, and Hopf Galois extensions over a complete discrete valuation ring, Math. Z. 210(1992), 3767.
[H] Hall, M., The theory of groups. MacMillan, New York, 1959.
[Hf] Hofstetter, I., Erweiterungen von HopfAlgebren und ihre kohomologische Beschreibung, Dissertation Universität Munchen, 1990. J. Algebra 164(1994), 264298.
[Ho] Holt, V.G., An interpretation of the cohomology groups Hn(G,M), J. Algebra 60(1979), 307320.
[J] Jimbo, M., A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10(1985), 6369.
[K] Kostant, B., Groups over Z, Proc. Sympos. Pure Math. 9(1966), 9098.
[Kc] Kac, V., Infinite dimensional Lie algebras. Cambridge Univ. Press, Cambridge, 1985.
[Li] Lin, Z., Induced representations of Hopf algebras: applications to quantum groups at roots of 1,J. Algebra 154(1993), 152187.
[Lo] Loday, V.G., Cohomologie et groupes de Steinberg relatives, J. Algebra 54(1978), 178202.
[LI] Lusztig, G., Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70(1988), 237249.
[L2] Lusztig, G., Modular representations and quantum groups, Contemp. Math. 82(1989), 5977.
[L3] Lusztig, G., Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. (1) 3,257296.
[L4] Lusztig, G., Quantum groups at roots of\, Geom. Dedicata 35(1990), 89114.
[L5] Lusztig, G., Introduction to quantized enveloping algebras, In: Proc. of the Third Workshop on Lie Groups Representations and its applications, Carlos Paz, 1989. Progr. Math. 105, Birkhäuser.
[LR] Larson, A.R.G. and Radford, D.E., Semisimple Hopf algebras, (1989), preprint.
[McL] Mac Lane, S., Categories for the Working Mathematician. Springer- Verlag, 1971.
[Mj] Majid, S., More examples of bicrossproduct and double crossproduct Hopf algebras, Israel J. Math. 72(1990), 133148.
[Ma] Majid, S., Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction, J. Algebra 130(1990), 1764.
[MjS] Majid, S. and Ya. Soibelman, Bicrossproduct structure of the quantum Weyl group, J. Algebra 163(1994), 6887.
[M] Manin, Y.I., Quantum groups and non-commutative geometry. Les Publications du CRM 1561, Montreal, 1988.
[Ms] Masuoka, A., Semisimple Hopf algebras of dimension 6, 8, preprint.
[NZ] Nichols, W.D. and Zoeller, M.B., A Hopf algebra freeness theorem, Amer. J. Math. 111(1989), 381385.
[OS] Oberst, U. and Schneider, H.-J., Untergruppen formeller Gruppen von endlichen Index, J. Algebra 31 (1974), 1(M4)
[R] Radford, D., Hopf algebras with projection, J. Algebra 92(1985), 322347.
[Se] Serre, J.-P., Cohomologie galoisienne. Lecture Notes in Math. 5, Springer-Verlag, 1964.
[Si] Singer, W., Extension theory for connected Hopf algebras, J. Algebra 21(1972), 1—16.
[Sch] Schneider, H.-J., Some remarks on exact sequences of quantum groups, Comm. Algebra (9) 21(1993), 33373358.
[Sch2] Schneider, H.-J., Zerlegbare Erweiterungen qffiner Gruppen, J. Algebra 66(1980), 569593.
[Sch3] Schneider, H.-J., Zerlegbare Untergruppen affiner Gruppen, Math. Ann. 255(1981), 139158.
[Sch4] Schneider, H.-J., Normal basis and transitivity of crossed products for Hopf algebras, J. Algebra 152(1992), 289312.
[Sch5] Schneider, H.-J., Hopf Galois extensions, crossed products and Clifford theory, Proc. of the Conference on Hopf algebras and their actions on rings, 1992. to appear.
[Sw] Sweedler, M., Hopf algebras. Benjamin, New York, 1969.
[Sw2] Sweedler, M., Cohomology of algebras over Hopf algebras, Trans. Amer. Math. Soc. 133(1968), 205239.
[Tl] Takeuchi, M., Finite dimensional representations of the quantum Lorentz group, Comm. Math. Phys. 144(1992), 557580.
[T2] Takeuchi, M., Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra (8) 9(1981), 841882.
[T3] Takeuchi, M., Relative Hopf modules—equivalences andfreeness criteria, J. Algebra 60(1979), 452—471.
[T4] Takeuchi, M., Some topics on GLq(n), J. Algebra 147(1992), 379410.
[T5] Takeuchi, M., Quotient spaces for Hopf algebras, Comm. Algebra (7) 22(1994), 25032523.
[Tf] Taft, E.J., The order of the antipode of a finite dimensional Hopf algebra, Proc. Nat. Acad. Sci. U.S.A. 68(1971), 26312633.
[TO] Tate, J. and Oort, F., Group schemes of prime order, Ann. Sci. École Norm. Sup. 3(1970), 1—21.
[W] Woronowicz, S.L., Compact matrixpseudogroups, Comm. Math. Phys. 111(1987), 613665.
[Z] Yongchang Zhu, Hopf algebras of prime dimension, Internat. Math. Res. Notices 1(1994), 5359.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Notes on Extensions of Hopf Algebras

  • Nicolás Andruskiewitsch (a1) (a2) and Ruskie Witsch (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed