Skip to main content Accessibility help
×
Home

Multipliers on Vector Valued Bergman Spaces

  • Oscar Blasco (a1) and José Luis Arregui (a2)

Abstract

Let $X$ be a complex Banach space and let ${{B}_{p}}\left( X \right)$ denote the vector-valued Bergman space on the unit disc for $1\,\le \,p\,<\,\infty $ . A sequence ${{\left( {{T}_{n}} \right)}_{n}}$ of bounded operators between two Banach spaces $X$ and $Y$ defines a multiplier between ${{B}_{p}}\left( X \right)$ and ${{B}_{q}}\left( Y \right)$ (resp. ${{B}_{p}}\left( X \right)$ and ${{l}_{q}}\left( Y \right)$ ) if for any function $f\left( z \right)\,=\,\sum _{n=0}^{\infty }\,{{x}_{n}}{{z}^{n}}$ in ${{B}_{p}}\left( X \right)$ we have that $g\left( z \right)\,=\,\sum _{n=0}^{\infty }\,{{T}_{n}}\left( {{x}_{n}} \right){{z}^{n}}$ belongs to ${{B}_{q}}\left( Y \right)$ (resp. ${{\left( {{T}_{n}}\left( {{x}_{n}} \right) \right)}_{n}}\,\in \,{{\ell }_{q}}\left( Y \right)$ ). Several results on these multipliers are obtained, some of them depending upon the Fourier or Rademacher type of the spaces $X$ and $Y$ . New properties defined by the vector-valued version of certain inequalities for Taylor coefficients of functions in ${{B}_{p}}\left( X \right)$ are introduced.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Multipliers on Vector Valued Bergman Spaces
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Multipliers on Vector Valued Bergman Spaces
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Multipliers on Vector Valued Bergman Spaces
      Available formats
      ×

Copyright

References

Hide All
[1] Amann, H., Operator-valued Fourier multipliers, vector valued Besov spaces and applications. Math. Nachr. 186 (1997), 1556.
[2] Anderson, J. M., Coefficient multipliers and Sobolev spaces. J. Analysis 1 (1993), 1319.
[3] Anderson, J. M., Clunie, J. and Pommerenke, C., On Bloch functions and normal functions. J. Reine Angew.Math. 270 (1974), 1237.
[4] Berg, J. and Löfstrom, J., Interpolation spaces. An introduction. Springer-Verlag, Berlin-New York, 1973.
[5] Arregui, J. L. and Blasco, O., Bergman and Bloch spaces of vector valued functions. To appear.
[6] Blasco, O., Spaces of vector valued analytic functions and applications. London Math. Soc. Lecture Note Ser. 158 (1990), 3348.
[7] Blasco, O., Operators on weighted Bergman spaces and applications. Duke Math. J. 66 (1992), 443467.
[8] Blasco, O., Multipliers on weighted Besov spaces of analytic functions. Contemp.Math. 144 (1993), 2333.
[9] Blasco, O., A characterization of Hilbert spaces in terms of multipliers between spaces of vector valued analytic functions. Michigan Math. J. 42 (1995), 537543.
[10] Blasco, O., Vector valued analytic functions of bounded mean oscillation and geometry of Banach spaces. Illinois J. Math. 41 (1997), 532558.
[11] Blasco, O., Multipliers on spaces of analytic functions. Canad. J. Math. 47 (1995), 4464.
[12] Blasco, O., Convolution by means of bilinear maps. Contemp.Math. 232 (1999), 85103.
[13] Blasco, O., Remarks on vector-valued BMOA and vector-valued multipliers. Positivity 4 (2000), 339356.
[14] Blasco, O., Vector-valued Hardy inequality and B-convexity. Ark. Mat. 38 (2000), 2136.
[15] Blasco, O. and Xu, Q., Interpolation between vector-valued Hardy spaces. J. Funct. Anal. 102 (1991), 331359.
[16] Duren, P., Hp-spaces. Academic Press, New York, 1970.
[17] Duren, P. L., Romberg, B. W. and Shields, A. L., Linear functionals on Hp spaces, 0 < p < 1. J. Reine Angew.Math. 238 (1969), 3260.
[18] Duren, P. L. and Shields, A. L., Coefficient multipliers of Hp and Bp spaces. Pacific J. Math. 32 (1970), 6978.
[19] Flett, T. M., On the rate of growth of mean values of holomorphic and harmonic functions. Proc. LondonMath. Soc. 20 (1976), 749768.
[20] Garćà-Cuerva, J., Kazarian, K. S., Kolyada, V. I. and Torrea, J. L., Vector-valued Hausdorff-Young inequality and applications. Russian Math. Surveys 53 (1998), 435–13.
[21] Garnett, J. B., Bounded analytic functions. Academic Press, New York, 1981.
[22] Gaudry, G. I., Jefferies, B. R. F. and Ricker, W. F., Vector-valued multipliers. Convolution with operator-valued measures. Dissertationes Math. 385, 2000.
[23] Hardy, G. H. and Littlewood, J. E., Some properties of fractional integrals, II. Math. Z. 34 (1932), 403439.
[24] Jevtic, M. and Jovanovic, I., Coefficient multipliers of mixed norm spaces. Canad. Math. Bull. 36 (1993), 283285.
[25] Jevtic, M. and Pavlovic, M., Coefficient multipliers on spaces of analytic functions. Acta Sci. Math. (Szeged) 64 (1998), 531545.
[26] Kellogg, C. N., An extension of Hausdorff-Young theorem. Michigan Math. J. 18 (1971), 121127.
[27] Mateljevic, M. and Pavlovic, M., Lp-behaviour of the integral means of analytic functions. Studia Math. 77 (1984), 219237.
[28] Maurey, B. and Pisier, G., Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math. 58 (1976), 4590.
[29] Peetre, J., Sur la transformation de Fourier des fonctions à valeurs vectorielles. Rend. Sem. Mat. Univ. Padova 42 (1969), 1546.
[30] Shields, A. L. and Williams, D. L., Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Amer. Math. Soc. 162 (1971), 287302.
[31] Vukotic, D., On the coefficient multipliers of Bergman spaces. J. London Math. Soc. 50 (1994), 341348.
[32] Weis, L., Operator valued Fourier multiplier theorems and maximal regularity. Math. Ann. 319 (2001), 735758.
[33] Wojtaszczyk, P., On multipliers into Bergman spaces and Nevalinna class. Canad. Math. Bull. 33 (1990), 151161.
[34] Zhu, K., Operators on Bergman spaces. Marcel Dekker, Inc., New York, 1990.
[35] Zygmund, A., Trigonometric series. Cambrigde University Press, New York, 1959.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Multipliers on Vector Valued Bergman Spaces

  • Oscar Blasco (a1) and José Luis Arregui (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.