Skip to main content Accessibility help
×
Home

Modular Abelian Varieties Over Number Fields

  • Xavier Guitart (a1) and Jordi Quer (a2)

Abstract

The main result of this paper is a characterization of the abelian varieties $B/K$ defined over Galois number fields with the property that the $L$ -function $L\left( B/K;\,s \right)$ is a product of $L$ -functions of non- $\text{CM}$ newforms over $Q$ for congruence subgroups of the form ${{\Gamma }_{1}}\,\left( N \right)$ . The characterization involves the structure of End $\left( B \right)$ , isogenies between the Galois conjugates of $B$ , and a Galois cohomology class attached to $B/K$ .

We call the varieties having this property strongly modular. The last section is devoted to the study of a family of abelian surfaces with quaternionic multiplication. As an illustration of the ways in which the general results of the paper can be applied, we prove the strong modularity of some particular abelian surfaces belonging to that family, and we show how to find nontrivial examples of strongly modular varieties by twisting.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modular Abelian Varieties Over Number Fields
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modular Abelian Varieties Over Number Fields
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modular Abelian Varieties Over Number Fields
      Available formats
      ×

Copyright

References

Hide All
[1] Baba, S. and Granath, H., Genus 2 curves with quaternionic multiplication. Canad. J. Math. 60(2008), no. 4, 734757. http://dx.doi.org/10.4153/CJM-2008-033-7
[2] Breuil, C., Conrad, B., Diamond, F., and Taylor, R., On the modularity of elliptic curves over ℚ: wild 3-adic exercises. J. Amer. Math. Soc. 14(2001), no. 4, 843939. http://dx.doi.org/10.1090/S0894-0347-01-00370-8
[3] Cremona, J. E., Algorithms for modular elliptic curves. Second ed., Cambridge University Press, Cambridge, 1997.
[4] Dieulefait, L. and Urroz, J. J., Solving Fermat-type equations via modular ℚ-curves over polyquadratic fields. J. Reine Angew. Math. 633(2009), 183195.
[5] Elkies, N., On elliptic K-curves. In: Modular curves and abelian varieties, Progr. Math., 224, Birkhäuser, Basel, 2004, pp. 8191.
[6] González, J. and Lario, J.-C., Rational and elliptic parametrizations of ℚ-curves. J. Number Theory 72(1998), no. 1, 1331. http://dx.doi.org/10.1006/jnth.1998.2259
[7] Hashimoto, K.-I. and Murabayashi, N., Shimura curves as intersections of Humbert surfaces and defining equations of QM-curves of genus two. Tôhoku Math. J. 47(1995), no. 2, 271296. http://dx.doi.org/10.2748/tmj/1178225596
[8] Karpilovsky, G., Group representations. Vol. 2. North-Holland Mathematics Studies, 177, North-Holland Publishing Co., Amsterdam, 1993.
[9] Khare, C. and Wintenberger, J.-P., Serre's modularity conjecture. I. Invent. Math. 178(2009), no. 3, 485504. http://dx.doi.org/10.1007/s00222-009-0205-7
[10] Khare, C., Serre's modularity conjecture. II. Invent. Math. 178(2009), no. 3, 505586. http://dx.doi.org/10.1007/s00222-009-0206-6
[11] Milne, J. S., Complex multiplication. Course notes available at http://www.jmilne.org.
[12] Mumford, D., Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, London, 1970.
[13] Pyle, E. E., Abelian varieties over ℚ with large endomorphism algebras and their simple components over In: Modular curves and abelian varieties, Progr. Math., 224, Birkhäuser, Basel, 2004, pp. 189239.
[14] Quer, J., ℚ-curves and abelian varieties of GL2-type. Proc. London Math. Soc. 81(2000), no. 2, 285317. http://dx.doi.org/10.1112/S0024611500012570
[15] Quer, J., Embedding problems over abelian groups and an application to elliptic curves. J. Algebra 237(2001), no. 1, 186202. http://dx.doi.org/10.1006/jabr.2000.8578
[16] Quer, J., Fields of definition of building blocks. Math. Comp. 78(2009), no. 265, 537554. http://dx.doi.org/10.1090/S0025-5718-08-02132-7
[17] Ribet, K. A., Fields of definition of abelian varieties with real multiplication. In: Arithmetic geometry (Tempe, AZ, 1993), Contemp. Math., 174, American Mathematical Society, Providence, RI, 1994, pp. 107118.
[18] Ribet, K. A., Abelian varieties over ℚ and modular forms. In: Modular curves and abelian varieties, Progr. Math., 224, Birkhäuser, Basel, 2004, pp. 241261.
[19] Shimura, G., Introduction to the arithmetic theory of automorphic functions. Kanô Memorial Lectures, 1, Publications of the Mathematical Society of Japan, 11, Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, NJ, 1971.
[20] Stein, W.. Modular forms: A computational approach. With an appendix by Paul Gunnells. Graduate Studies in Mathematics, 79, American Mathematical Society, Providence, RI, 2007.
[21] Taylor, R. and Wiles, A., Ring-theoretic properties of certain Hecke algebras. Ann. of Math. 141(1995), no. 3, 553572. http://dx.doi.org/10.2307/2118560
[22] Wiles, A., Modular elliptic curves and Fermat's last theorem. Ann. of Math. 141(1995), no. 3, 443551. http://dx.doi.org/10.2307/2118559
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Modular Abelian Varieties Over Number Fields

  • Xavier Guitart (a1) and Jordi Quer (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.