Skip to main content Accessibility help
×
Home

Majorations Effectives Pour L’ Équation de Fermat Généralisée

  • Alain Kraus (a1)
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Majorations Effectives Pour L’ Équation de Fermat Généralisée
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Majorations Effectives Pour L’ Équation de Fermat Généralisée
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Majorations Effectives Pour L’ Équation de Fermat Généralisée
      Available formats
      ×

Abstract

  • An abstract is not available for this content so a preview has been provided below. To view the full text please use the links above to select your preferred format.

Copyright

References

Hide All
1. Apostol, T.M., Introduction to Analytic Number Theory. Undergraduate Texts in Math., Springer-Verlag, 1976.
2. Atkin, A.O.L. et Lehner, J., Hecke operators on Γ0(N). Math. Ann. 185(1970), 134160.
3. Cremona, J.E., Algorithms for modular elliptic curves. Cambridge University Press, 1992.
4. Darmon, H., Serre's conjectures. Seminar on Fermat's Last Theorem (Ed.: Kumar Murty, V.), CMS Conference Proceedings 17(1995), 135153.
5. Darmon, H. et L.Merel,Winding quotients and some variants of Fermat's last Theorem. J. Crelle 490(1997).
6. Deligne, P., La conjecture de Weil. I, Publ. Math. I.H.E.S. 43(1973), 273307.
7. Deligne, P., Représentations l-adiques. S.M.F, Astérisque, 127(1985), 249255.
8. Dénes, P., Über die Diophantische Gleichung xl + yl = czl. Acta Math. 88(1952), 241251.
9. Diamond, F., On deformation rings and Hecke rings. Ann. of Math. 144(1996), 137166.
10. Diamond, F. et Kramer, K., Modularity of a family of elliptic curves. Math. Res. Lett. 2(1995), 299304.
11. Frey, G., Links between solutions of A - B = C and elliptic curves. Lecture Notes in Math. 13801989, 3162.
12. Frey, G., On elliptic curves with isomorphic torsion structures and corresponding curves of genus 2. Dans : Elliptic Curves, Modular Forms, & Fermat's Last Theorem (Rédacteurs : Coates, J. et Yau, S.T.), International Press, 1995.
13. Hijikata, H., Explicit formula of the traces of Hecke operators for Γ0(N). J. Math. Soc. Japan 26(1974), 5682.
14. Koblitz, N., Introduction to Elliptic Curves and Modular Forms. Graduate Texts in Math. 97, Springer- Verlag, 1984.
15. Kraus, A., Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive. Manuscripta Math. 69(1990), 353385.
16. Kraus, A., Une remarque sur les points de torsion des courbes elliptiques. C.R. Acad. Sci. Paris t. 321Série I(1995), 11431146.
17. Kraus, A., Détermination du poids et du conducteur associés aux représentations des points de p-torsion d’une courbe elliptique. Dissertationes Math. 364(1997), 39 pp.
18. Kraus, A. et Oesterlé, J., Sur une question de B. Mazur. Math. Ann. 293(1992), 259275.
19. Mestre, J.-F., La méthode des graphes. Exemples et applications. Taniguchi Symp., Kyoto, 1986. 217242.
20. Oesterlé, J., Nouvelles approches du “théorème de Fermat”. Sém. Bourbaki 694, 1987–88.
21. Ribet, K., On the equation ap + 2αbp + cp = 0. Acta Arith., à paraître.
22. Serre, J.-P., Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(1972), 259331.
23. Serre, J.-P., Modular forms of weight one and Galois representations. Algebraic Number Theory (Rédacteur : Fröhlich, A.), New York, Academic Press, 1977. 193268.
24. Serre, J.-P., Sur les représentations modulaires de degré 2 de Gal (ℚ/ ℚ), Duke Math. J. 54(1987), 179230.
25. Serre, J.-P., Abelian l-Adic Representations and Elliptic Curves. Advanced book classics series, Addison- Wesley, 1989.(publié originalement en 1968 par Benjamin, W.A., Inc.).
26. Serre, J.-P., Travaux de Wiles (et Taylor, …), I. Sém. Bourbaki 803, 1994–95.
27. Shimura, G., Introduction to the Arithmetic Theory of Automorphic Functions. Publ. Math. Soc. Japan 11, Princeton Univ. Press, 1971.
28. Silverman, J., The Arithmetic of Elliptic Curves. Graduate Texts in Math. 106, Springer-Verlag, 1986.
29. Tate, J., Algorithm for determining the type of a singular fiber in an elliptic pencil. Dans :Modular Functions of One Variable IV, Lecture Notes in Math. 476(1975), 3352.
30. Wiles, A., Modular elliptic curves and Fermat's Last Theorem. Ann. of Math. 141(1995), 443551.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Majorations Effectives Pour L’ Équation de Fermat Généralisée

  • Alain Kraus (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed