Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T12:33:34.025Z Has data issue: false hasContentIssue false

Lq Norms of Fekete and Related Polynomials

Published online by Cambridge University Press:  20 November 2018

Christian Günther
Affiliation:
Department of Mathematics, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany e-mail: chriguen@math.upb.de, kus@math.upb.de
Kai-Uwe Schmidt
Affiliation:
Department of Mathematics, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany e-mail: chriguen@math.upb.de, kus@math.upb.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A Littlewood polynomial is a polynomial in $\mathbb{C}\left[ z \right]$ having all of its coefficients in $\{-1,1\}$. There are various old unsolved problems, mostly due to Littlewood and Erdős, that ask for Littlewood polynomials that provide a good approximation to a function that is constant on the complex unit circle, and in particular have small ${{L}^{q}}$ normon the complex unit circle. We consider the Fekete polynomials

$${{f}_{p}}(z)=\sum\limits_{j=1}^{p-1}{(j|p){{z}^{j}}},$$
,

where $p$ is an odd prime and $(.|p)$ is the Legendre symbol (so that ${{z}^{-1}}{{f}_{p}}(z)$ is a Littlewood polynomial). We give explicit and recursive formulas for the limit of the ratio of ${{L}^{q}}$ and ${{L}^{2}}$ norm of ${{f}_{p}}$ when $q$ is an even positive integer and $p\to \infty $. To our knowledge, these are the first results that give these limiting values for specific sequences of nontrivial Littlewood polynomials and infinitely many $q$. Similar results are given for polynomials obtained by cyclically permuting the coefficients of Fekete polynomials and for Littlewood polynomials whose coefficients are obtained from additive characters of finite fields. These results vastly generalise earlier results on the ${{L}^{4}}$ norm of these polynomials.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[1] The on-line encyclopedia of integer sequences. 2010. published electronically at http://oeis.org. Google Scholar
[2] Berndt, B. C., Evans, R. J., and Williams, K. S., Gauss and jacobi sums. Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998.Google Scholar
[3] Borwein, P., Computational excursions in analysis and number theory. CMS Books in Mathematics, 10, Springer-Verlag, New York, 2002.http://dx.doi.org/10.1007/978-0-387-21652-2 Google Scholar
[4] Borwein, P. and Choi, K.-K. S., Explicit merit factor formulae for Fekete and Turyn polynomials. Trans. Amer. Math. Soc. 354(2002), 219234.http://dx.doi.org/10.1090/S0002-9947-01-02859-8 Google Scholar
[5] Borwein, P., K.-K. S.|Choi, and S.Yazdani, , An extremal property of Fekete polynomials. Proc. Amer. Math. Soc. 129(2001), 1927.http://dx.doi.org/10.1090/S0002-9939-00-05798-1 Google Scholar
[6] Borwein, P. and Lockhart, R., The expected Lp norm of random polynomials. Proc. Amer. Math. Soc. 129(2001), no. 5, 14631472.http://dx.doi.org/10.1090/S0002-9939-00-05690-2 Google Scholar
[7] Carlitz, L.,A sequence of integers related to the Bessel functions. Proc. Amer. Math. Soc. 14(1963), 19.http://dx.doi.Org/10.1090/S0002-9939-1 963-01 66147-X Google Scholar
[8] Choi, S. and Erdélyi, T., Average Mahler's measure and Lp norms of Littlewood polynomials. Proc. Amer. Math. Soc. Ser. B 1(2014), 105120.http://dx.doi.org/10.1090/S2330-1 511-2014-00013-4 Google Scholar
[9] Conrey, B., Granville, A., Poonen, B., and Soundararajan, K., Zeros of Fekete polynomials. Ann. Inst. Fourier (Grenoble) 50(2000), no. 3, 865889.http://dx.doi.Org/10.58O2/aif.1776 Google Scholar
[10] Doche, C. and Habsieger, L., Moments of the Rudin-Shapiro polynomials. J. Fourier Anal. Appl. 10(2004), no. 5, 497505.http://dx.doi.Org/10.1007/s00041-004-3049-y Google Scholar
[11] Eger, S., Restricted weighted integer compositions and extended binomial coefficients. J. Integer Seq. 16(2013), no. 1, 13.1.3.Google Scholar
[12] Erdélyi, T., Polynomials with Littlewood-type coefficient constraints. In: Approximation theory, X, (St. Louis, MO, 2001), Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2002, pp. 153196.Google Scholar
[13] Erdélyi, T., Upper bounds for the Lq norm of Fekete polynomials on subarcs. Acta Arith. 153(2012),8191.http://dx.doi.org/10.4064/aa153-1-5 Google Scholar
[14] Erdős, P., Some old and new problems in approximation theory.research problems 95-1. Constr. Approx. 11(1995), no. 3, 419421.http://dx.doi.Org/10.1007/BF01208564 Google Scholar
[15] Fekete, M. and Pólya, G., Über ein Problem von Laguerre. Rend. Circ. Mat. Palermo 34(1912),89120.Google Scholar
[16] Fielder, D. C. and Alford, C. O., Pascal'triangle: top gun or just one of the gang? In: Applications of Fibonacci numbers, 4, (Winston-Salem, NC, 1990), Kluwer Acad. Publ., Dordrecht, 1991,pp. 7790.http://dx.doi.Org/10.1007/978-94-011 -3586-3J0 Google Scholar
[17] Golay, M. J. E., The merit factor of long low autocorrelation binary sequences. IEEE Trans. Inform.Theory 28(1982), no. 3, 543549.Google Scholar
[18] Good, I. J. and Tideman, T. N., Integration over a simplex, truncated cubes, and Eulerian numbers. Numer. Math. 30(1978), no. 4, 355367.http://dx.doi.Org/10.1007/BF01398505 Google Scholar
[19] Hoholdt, T. and Jensen, H. E., Determination of the merit factor of Legendre sequences. IEEE Trans. Inform. Theory 34(1988), 161164.Google Scholar
[20] Hoholdt, T., Jensen, H. E., and Justesen, J., Aperiodic correlations and the merit factor of a class of binary sequences. IEEE Trans. Inform. Theory 31(1985), no. 4, 549552.http://dx.doi.Org/10.1109/TIT.1985.1057071 Google Scholar
[21] Jedwab, J., Katz, D. J., and Schmidt, K.-U., Advances in the merit factor problem for binary sequences. J. Combin. Theory Ser. A 120(2013), no. 4, 882906.http://dx.doi.Org/10.1016/j.jcta.2O13.01.010 Google Scholar
[22] Jedwab, J., Littlewood polynomials with small L4 norm. Adv. Math. 241(2013), 127136.http://dx.doi.Org/10.1016/j.aim.2013.03.015 Google Scholar
[23] Jensen, J. M., Jensen, H. E., and Hoholdt, T., The merit factor of binary sequences related to difference sets. IEEE Trans. Inform. Theory 37(1991), no. 3, 617626.http://dx.doi.Org/10.1109/18.79917 Google Scholar
[24] Katz, D. J., Asymptotic L4 norm of polynomials derived from characters. Pacific J. Math. 263(2013), no. 2, 373398.http://dx.doi.org/10.2140/pjm.2013.263.373 Google Scholar
[25] Katz, N. M., Gauss sums, Kloosterman sums, and monodromy groups. Annals of Mathematics Studies, 116, Princeton University Press, Princeton, NJ, 1988.Google Scholar
[26] Krantz, S. G. and Parks, H. R., A primer of real analytic functions. Second ed., Birkhäuser Boston,Inc., Boston, MA, second edition, 2002.Google Scholar
[27] Lidl, R. and Niederreiter, H., Finite fields. Encyclopedia of Mathematics and its Applications, 20,Cambridge University Press, Cambridge, 1997.Google Scholar
[28] Littlewood, J. E., On polynomials . J. London Math. Soc. 41(1966),367376. http://dx.doi.Org/10.1112/jlms/s1-41.1.367 Google Scholar
[29] Littlewood, J. E., Some problems in real and complex analysis. Heath Mathematical Monographs, D. C. Heath and Company, Lexington, MA, 1968.Google Scholar
[30] Montgomery, H. L., An exponential polynomial formed with the Legendre symbol. Acta Arith. 37(1980), 375380.Google Scholar
[31] Montgomery, H. L. and Vaughan, R. C., Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, Cambridge, 2007.Google Scholar
[32] Newman, D. J. and Byrnes, J. S., The L4 norm of a polynomial with coefficients ±1. Amer. Math. Monthly 97(1990), no. 1, 4245.http://dx.doi.Org/1 0.2307/2324003 Google Scholar
[33] Petersen, T. K., Eulerian numbers. Birkhäuser Advanced Texts, Springer, New York, 2015.http://dx.doi.Org/10.1007/978-1 -4939-3091-3 Google Scholar
[34] Rudin, W., Some theorems on Fourier coefficients. Proc. Amer. Math. Soc. 10(1959), 855859.http://dx.doi.org/10.1090/S0002-9939-1959-0116184-5 Google Scholar
[35] Shapiro, H. S., Extremal problems for polynomials and power series. Master's thesis, MIT, 1951.Google Scholar
[36] Stanley, R. P., Enumerative combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999.http://dx.doi.Org/10.1017/CBO9780511609589 Google Scholar
[37] Taghavi, M. and Azadi, H. K., Some new results on the Rudin-Shapiro polynomials. J. Appl. Math. Inform. 26(2008), no. 3-4, 583590.Google Scholar
[38] Trigub, R. M. and Bellinsky, E. S., Fourier analysis and approximation of functions. Kluwer Academic Publishers, Dordrecht, 2004.http://dx.doi.org/10.1007/978-1-4020-2876-2 Google Scholar
[39] Wang, R.-H., Xu, Y., and Xu, Z.-Q., Eulerian numbers: a spline perspective. J. Math. Anal. Appl. 370(2010), no. 2, 486490.http://dx.doi.Org/10.1016/j.jmaa.2O10.05.017 Google Scholar
[40] Zygmund, A., Trigonometric series. Vol. II. Third ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002.Google Scholar