Skip to main content Accessibility help
×
Home

Geometric Study of Minkowski Differences of Plane Convex Bodies

  • Yves Martinez-Maure (a1)

Abstract

In the Euclidean plane ${{\mathbb{R}}^{2}}$ , we define the Minkowski difference $\mathcal{K}-\mathcal{L}$ of two arbitrary convex bodies $\mathcal{K},\mathcal{L}$ as a rectifiable closed curve ${{\mathcal{H}}_{h}}\subset {{\mathbb{R}}^{2}}$ that is determined by the difference $h={{h}_{K}}-{{h}_{\mathcal{L}}}$ of their support functions. This curve ${{\mathcal{H}}_{h}}$ is called the hedgehog with support function $h$ . More generally, the object of hedgehog theory is to study the Brunn–Minkowski theory in the vector space of Minkowski differences of arbitrary convex bodies of Euclidean space ${{\mathbb{R}}^{n+1}}$ , defined as (possibly singular and self-intersecting) hypersurfaces of ${{\mathbb{R}}^{n+1}}$ . Hedgehog theory is useful for: (i) studying convex bodies by splitting them into a sum in order to reveal their structure; (ii) converting analytical problems into geometrical ones by considering certain real functions as support functions. The purpose of this paper is to give a detailed study of plane hedgehogs, which constitute the basis of the theory. In particular: (i) we study their length measures and solve the extension of the Christoffel–Minkowski problem to plane hedgehogs; (ii) we characterize support functions of plane convex bodies among support functions of plane hedgehogs and support functions of plane hedgehogs among continuous functions; (iii) we study the mixed area of hedgehogs in ${{\mathbb{R}}^{2}}$ and give an extension of the classical Minkowski inequality (and thus of the isoperimetric inequality) to hedgehogs.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Geometric Study of Minkowski Differences of Plane Convex Bodies
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Geometric Study of Minkowski Differences of Plane Convex Bodies
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Geometric Study of Minkowski Differences of Plane Convex Bodies
      Available formats
      ×

Copyright

References

Hide All
[1] Barbier, E., Note sur le probleme de l’aiguille et le jeu joint couvert. J. Math. Pures Apple. 5(1860), 273286.
[2] Bonnesen, T. and Fenchel, W., Theorie der konvexen Körper. Springer, Berlin. Reprint: Chelsea Publishing, New York, 1948.
[3] Geppert, H., Über den Brunn-Minkowskischen Satz. Math. Z. 42(1937), 238254.
[4] Görtler, H., Erzeugung stützbarer Bereiche. I. Deutsche Math. 2(1937), 454456.
[5] Görtler, H., Erzeugung stützbarer Bereiche. II. Deutsche Math. 3(1937), 189200.
[6] Kallay, M., Reconstruction of a plane convex body from the curvature of its boundary. Israel J. Math. 17(1974), 149161.
[7] Langevin, R., Levitt, G., and Rosenberg, H., Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss). In: Singularities, Banach Center Publ. 20, PWN, Warsaw, 1988, pp. 245253.
[8] Martinez-Maure, Y., Feuilletages des surfaces et hérissons dans ℝ3 . Thèse de doctorat de 3ème cycle, Université Paris 7, 1985.
[9] Martinez-Maure, Y., A note on the tennis ball theorem. Amer. Math. Monthly 103(1996), 338340.
[10] Martinez-Maure, Y., Sur les hérissons projectifs (enveloppes paramétrées par leur application de Gauss). Bull. Sci. Math. 121(1997), no. 8, 585601.
[11] Martinez-Maure, Y., Hedgehogs of constant width and equichordal points. Ann. Polon. Math. 67(1997), no. 3, 285288.
[12] Martinez-Maure, Y., De nouvelles inégalités géométriques pour les hérissons. Arch. Math. (Basel) 72(1999), 444453.
[13] Martinez-Maure, Y., Indice d’un hérisson: étude et applications. Publ. Mat. 44(2000), 237255.
[14] Martinez-Maure, Y., A fractal projective hedgehog. Demonstratio Math. 34(2001), no. 1, 5963.
[15] Martinez-Maure, Y., Contre-exemple à une caractérisation conjecturée de la sphère. C. R. Acad. Sci. Paris, Sér. I Math. 332(2001), 4144.
[16] Martinez-Maure, Y., Hedgehogs and zonoids. Adv. Math. 158(2001), 117.
[17] Martinez-Maure, Y., La théorie des hérissons (différences de corps convexes) et ses applications. Habilitation, Univ. Paris 7, 2001.
[18] Martinez-Maure, Y., Sommets et normales concourantes des courbes convexes de largeur constante et singularités des hérissons. Arch. Math. 79(2002) 489498.
[19] Martinez-Maure, Y., Voyage dans l’univers des hérissons. In: Ateliers Mathematica, Paris, Vuibert, 2003, 445470.
[20] Martinez-Maure, Y., Théorie des hérissons et polytopes. C. R. Acad. Sci. Paris Sér. I Math. 336(2003), no. 3, 241244.
[21] Martinez-Maure, Y., Les multihérissons et le théorème de Sturm–Hurwitz. Arch. Math. (Basel) 80(2003), 7986.
[22] Martinez-Maure, Y., A Brunn-Minkowski theory for minimal surfaces. Illinois J. Math 48(2004), no. 2, 589607.
[23] Ohtsuka, H., Dirichlet problems of Riemann surfaces and conformal mappings. Nagoya Math. J. 3(1951), 91137.
[24] Schneider, R., Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge, 1993.
[25] Valentine, F. A., Convex Sets. McGraw-Hill, New York, 1964.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Geometric Study of Minkowski Differences of Plane Convex Bodies

  • Yves Martinez-Maure (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.