Skip to main content Accessibility help
×
Home

Geography of Irregular Gorenstein 3–folds

  • Tong Zhang (a1)

Abstract

In this paper, we study the explicit geography problem of irregular Gorenstein minimal 3-folds of general type. We generalize the classical Noether–Castelnuovo type inequalities for irregular surfaces to irregular 3-folds according to the Albanese dimension.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Geography of Irregular Gorenstein 3–folds
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Geography of Irregular Gorenstein 3–folds
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Geography of Irregular Gorenstein 3–folds
      Available formats
      ×

Copyright

References

Hide All
[1] Barja, M. A., Lower bounds of the slope of fibred threefolds. Internat. J. Math. 11(2000), no. 4, 461491.
[2] Barja, M. A., Generalized Clifford–Severi inequality and the volume of irregular varieties. arxiv:1303.3045v2.
[3] Beauville, A., L'application canonique pour les surfaces de type général. Invent. Math. 55(1979), no. 2, 121140. http://dx.doi.Org/10.1007/BF01390086
[4] Birkenhake, C. and Lange, H., Complex abelian varieties. Grundlehren der Mathematischen Wissenschaften, 302, Springer–Verlag, Berlin, 1992.
[5] Bombieri, E., Canonical models of surfaces of general type. Inst. Hautes Études Sci. Publ. Math. 42(1973), 171219.
[6] Catanese, F., Chen, M., and –Q. Zhang, D., The Noether inequality for smooth minimal 3–folds. Math. Res. Lett. 13(2006), no. 4, 653666.http://dx.doi.org/10.4310/MRL.2006.v13.n4.a13
[7] Chen, J. A. and Chen, M., The Noether inequality for Gorenstein minimal 3–folds. arxiv:1310.7709
[8] Chen, J. A. and Chen, M., Explicit birational geometry of threefolds of general type, I. Ann. Sci. Éc Norm. Super. 43(2010), 365394.
[9] Chen, J. A., Chen, M., and –Q. Zhang, D., On the 5–canonical system of 3–folds of general type. J Reine Angew. Math. 603(2007), 161181.
[10] Chen, J. A. and Hacon, C. D., On the geography of threefolds of general type. J. Algebra 321(2009), no. 9, 25002507.http://dx.doi.Org/10.1016/j.jalgebra.2009.01.01 2
[11] Chen, M., Inequalities of Noether type for 3–folds of general type. J. Math. Soc. Japan 56(2004), no. 4, 11311155. http://dx.doi.org/10.2969/jmsj71190905452
[12] Chen, M., Minimal threefolds of small slope and the Noether inequality for canonically polarized threefolds. Math. Res. Lett. 11(2004), no. 5–6, 833852.http://dx.doi.org/10.4310/MRL.2004.v11n6.a9
[13] Chen, M. and Hacon, C. D., On the geography of Gorenstein minimal 3–folds of general type. Asian J. Math. 10(2006), no. 4, 757763. http://dx.doi.org/10.4310/AJM.2006.v10.n4.a8
[14] Debarre, O., Inégalités numériques pour les surfaces de type général. Bull. Soc. Math. France 110(1982), no. 3, 319346.
[15] di Severi, F., La série canonica e la teoria délie série principali degruppi dipunti sopra una superifcie algebrica. Comment. Math. Helv. 4(1932), no. 1, 268326.http://dx.doi.org/10.1007/BF01202721
[16] Ein, L. and Lazarsfeld, R., Singularities oftheta divisors and the birational geometry of irregular varieties. J. Amer. Math. Soc. 10(1997), no. 1, 243258.http://dx.doi.org/10.1090/S0894-0347-97-00223-3
[17] Francia, P., On the base points of the bicanonical system. In: Problems in the theory of surfaces and their classification (Cortona, 1988), Sympos. Math., 32, Academic Press, London, 1991, pp. 141150.
[18] Green, M. and Lazarsfeld, R., Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville. Invent. Math. 90(1987), no. 2, 389407.http://dx.doi.Org/10.1007/BF01388711
[19] Hacon, C. and Kovâcs, S., Generic vanishing fails for singular varieties and in characteristic p > O. arxiv:1212.5105
[20] Horikawa, E., Algebraic surfaces of general type with small c2 1 V. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(1981), no. 3, 745755.
[21] Hu, Y., Inequality of Noether type for smooth minimal 3-folds of general type. arxiv:1309.4618
[22] Hunt, B., Complex manifold geography in dimension 2 and 3. J. Differential Geom. 30(1989), no. 1, 51153.
[23] Kollâr, J., Higher direct images of dualizing sheaves. I. Ann. of Math. (2) 123(1986), no. 1,1142. http://dx.doi.Org/10.2307/1971351
[24] Kollâr, J., Higher direct images of dualizing sheaves. II. Ann. of Math. (2) 124(1986), no. 1, 171202. http://dx.doi.Org/10.2307/1971390
[25] Liedtke, C., Algebraic surfaces in positive characteristic. In: Birational geometry, rational curves, and arithmetic. Springer, New York, 2013, pp. 229292. http://dx.doi.Org/10.1007/978-1-4614-6482-2.11
[26] Liedtke, C., Algebraic surfaces of general type with small c2 1 in positive characteristic. Nagoya Math. J. 191(2008), 111134.
[27] Lu, S. S. Y., On surfaces of general type with maximal Albanese dimension. J. Reine Angew. Math. 641(2010), 163175.
[28] Lu, S. S. Y., Holomorphic curves on irregular varieties of general type starting from surfaces. In: Affine algebraic geometry, CRM Proc. Lecture Notes, 54, American Mathematical Society, Providence, RI, 2011, pp. 205220.
[29] Lu, S. S. Y., A uniform bound on the canonical degree of Albanese defective curves on surfaces. Bull. Lond. Math. Soc. 44(2012), no. 6, 11821188.http://dx.doi.Org/10.1112/blms/bdsO43
[30] Miyaoka, Y. The Chern classes and Kodaira dimension of a minimal variety. In: Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, pp. 449476.
[31] Ohno, K., Some inequalities for minimal fibrations of surfaces of general type over curves. J. Math. Soc. Japan 44(1992), no. 4, 643666. http://dx.doi.Org/10.2969/jmsj704440643
[32] Pardini, R., The Severi inequality K2 > 4Xfor surfaces of maximal Albanese dimension. Invent. Math. 159(2005), no. 3, 669672. http://dx.doi.org/10.1007/s00222-004-0399-7
[33] Shin, D.-K., Noether inequality for a nef and big divisor on a surface. Commun. Korean Math. Soc. 23(2008), no. 1, 1118.http://dx.doi.Org/10.4134/CKMS.2008.23.1.011
[34] Xiao, G., Fibered algebraic surfaces with low slope. Math. Ann. 276(1987), no. 3, 449466.http://dx.doi.Org/10.1007/BF01450841
[35] Yuan, X. and Zhang, T., Relative Noether inequality on fibered surfaces. Adv. Math. 259(2014), 89115.http://dx.doi.Org/10.1016/j.aim.2014.03.018
[36] Zhang, T., Severi inequality for varieties of maximal Albanese dimension. Math. Ann. 359(2014),no. 3-4, 10971114.http://dx.doi.org/10.1007/s00208-014-1025-7
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Geography of Irregular Gorenstein 3–folds

  • Tong Zhang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.