Skip to main content Accessibility help

Free Product C*-algebras Associated with Graphs, Free Differentials, and Laws of Loops

  • Michael Hartglass (a1)


We study a canonical ${{\text{C}}^{*}}$ -algebra, $\text{S}\left( \Gamma ,\mu \right)$ , that arises from a weighted graph $\left( \Gamma ,\mu \right)$ , specific cases of which were previously studied in the context of planar algebras. We discuss necessary and sufficient conditions of the weighting that ensure simplicity and uniqueness of trace of $\text{S}\left( \Gamma ,\mu \right)$ , and study the structure of its positive cone. We then study the $*$ -algebra, $\mathcal{A}$ , generated by the generators of $\text{S}\left( \Gamma ,\mu \right)$ , and use a free differential calculus and techniques of Charlesworth and Shlyakhtenko as well as Mai, Speicher, and Weber to show that certain “loop” elements have no atoms in their spectral measure. After modifying techniques of Shlyakhtenko and Skoufranis to show that self adjoint elements $x\,\in \,{{M}_{n}}\left( \mathcal{A} \right)$ have algebraic Cauchy transform, we explore some applications to eigenvalues of polynomials in Wishart matrices and to diagrammatic elements in von Neumann algebras initially considered by Guionnet, Jones, and Shlyakhtenko.



Hide All
[Avi82] Avitzour, D., Free products of C*-algebras. Trans. Amer. Math. Soc. 271(1982), no. 2, 423435.http://dx.doi.Org/10.2307/1998890
[BG05] Benaych-Georges, F., Rectangular random matrices, related free entropy and free fisher's information. arxiv:math/051 2081
[BHP12] Brothier, A., Hartglass, M., and Penneys, D., Rigid C*-tensor categories of bimodules over interpolated free group factors. J. Math. Phys. 53(2012), no. 12,123525.http://dx.doi.Org/10.1063/1.4769178
[Bis97] Bisch, D., Bimodules, higher relative commutants and the fusion algebra associated to a subfactor. In: Operator algebras and their applications (Waterloo, ON, 1994/1995), Fields Inst. Commun., 13, Amer. Math. Soc, Providence, RI, 1997, pp. 1363.
[CDS14] Curran, S., Dabrowski, Y., and Shlyakhtenko, D., Free analysis and planar algebras. arxiv:1411.0268
[CK80] Cuntz, J. and Krieger, W., A class of C*-algebras and topological Markov chains. Invent. Math. 56(1980), no. 3, 251268.
[CS15] Charlesworth, I. and Shlyakhtenko, D., Regularity of polynomials in free variables. arxiv:1408.0580v2
[Dyk93] Dykema, K., Free products of hyperfinite von Neumann algebras and free dimension. Duke Math. J. 69(1993), no. 1, 97119.
[Dyk99] Dykema, K. J., Simplicity and the stable rank of some free product C* -algebras. Trans. Amer. Math. Soc. 351(1999), no. 1, 140.
[DHR97] Dykema, K., Haagerup, U., and Rordam, M., The stable rank of some free product C* -algebras. Duke Math. J. 90(1997), no. 1, 95121.
[DR13] Dykema, K. J. and Redelmeier, D., The amalgamated free product of hyperfinite von Neumann algebras over finite dimensional subalgebras. Houston J. Math. 39(2013), no. 4,13131331.
[DR98] Dykema, K.J. and Rørdam, M., Projections in free product C* -algebras. Geom. Funct. Anal. 8(1998), no. 1, 116.
[Ger] Germain, E., KK-theory of C* -algebras related to Pimsner algebras.
[GJS10] Guionnet, A., Jones, V. E R., and Shlyakhtenko, D. , Random matrices, free probability, planar algebras and subfactors. In: Quanta of maths, Clay Math. Proc, 11, Amer. Math. Soc, Providence, RI, 2010, pp. 201239.
[GJS11] Guionnet, A., A semi-finite algebra associated to a subf actor planar algebra. J. Funct. Anal. 261(2011), no. 5, 13451360.http://dx.doi.Org/10.1016/j.jfa.2O11.05.004
[Harl3] Hartglass, M., Free product von Neumann algebras associated to graphs, and Guionnet, Jones, Shlyakhtenko subfactors in infinite depth. J. Funct. Anal. 265(2013), no. 12, 33053324. http://dx.doi.Org/10.1016/j.jfa.2013.09.011
[HP14a] Hartglass, M. and Penneys, D., C* -algebras from planar algebras I: canonical C* -algebras associated to a planar algebra. Trans. Amer. Math. Soc, to appear. arxiv:1401.2485
[HP14b] Hartglass, M., C* -algebras from planar algebras II: The Guionnet--Jones-Shlyakhtenko C* -algebras. J. Funct. Anal. 267(2014), no. 10, 38593893.http://dx.doi.Org/10.1016/j.jfa.2O14.08.024
[Ivall] Ivanov, N. A., On the structure of some reduced amalgamated free product C* -algebras. Internat. J. Math. 22(2011), no. 2, 281306.http://dx.doi.Org/10.1142/S0129167X11006799
[Jon83] Jones, V. F. R., Index for subfactors. Invent. Math. 72(1983), no. 1,125, http://dx.doi.Org/10.1007/BF01389127
[MSW14] Mai, T., Speicher, R., Absence of algebraic relations and of zero divisors under the assumption of finite non-microstates free fisher information. arxiv:1407.5715
[PetlO] Peters, E., A planar algebra construction of the Haagerup subfactor. Internat. J. Math. 21(2010), no. 8, 9871045. http://dx.doi.Org/10.1142/S0129167X10006380
[Pim97] Pimsner, M. V.,A class of C* -algebras generalizing both Cuntz-Krieger algebras and crossed products by Z. In: Free probability theory (Waterloo, ON, 1995), Fields Inst. Commun., 12, American Mathematical Society, Providence, RI, 1997, pp. 189212.
[Pop95] Popa, S., An axiomatization of the lattice of higher relative commutants of a subfactor. Invent. Math. 120(1995), no. 3, 427445,
[Rie83] M. A.|Rieffel, Dimension and stable rank in the K-theory of C* -algebras. Proc. London Math. Soc. (3) 46(1983), no. 2, 301333.http://dx.doi.Org/10.111 2/plms/s3-46.2.301
[SauO3] Sauer, R., Power series over the group ring of a free group and applications to Novikov-Shubin invariants. In: High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, pp. 449468.http://dx.doi.Org/10.1142/9789812704443J3020
[Sch62] Schiitzenberger, M. P., On a theorem of R.Jungen. Proc. Amer. Math. Soc. 13(1962), 885890. http://dx.doi.Org/10.2307/2034080
[Shl99] Shlyakhtenko, D.,A-valued semicircular systems. J. Funct. Anal. 166(1999), no. 1,147.
[SS15] Shlyakhtenko, D. and Skoufranis, P., Freely independent random variables with non-atomic distributions. Trans. Amer. Math. Soc. 367(2015), no. 9, 62676291.
[VDN92] Voiculescu, D. V., Dykema, K. J., and Nica, A., Free random variables. CRM Monograph Series, 1, American Mathematical Society, Providence, RI, 1992.
[Voi93] Voiculescu, D. V., The analogues of entropy and of Fisher-s information measure in free probability theory. I. Comm. Math. Phys. 155(1993), no. 1, 7192.
MathJax is a JavaScript display engine for mathematics. For more information see


Related content

Powered by UNSILO

Free Product C*-algebras Associated with Graphs, Free Differentials, and Laws of Loops

  • Michael Hartglass (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.