Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-2bkkj Total loading time: 0.417 Render date: 2022-10-03T22:30:56.449Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Explicit Upper Bounds for Residues of Dedekind Zeta Functions and Values of L-Functions at s = 1, and Explicit Lower Bounds for Relative Class Numbers of CM-Fields

Published online by Cambridge University Press:  20 November 2018

Stéphane Louboutin*
Affiliation:
Institut de Mathématiques de Luminy, UPR 906, 163, avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France. email: loubouti@iml.univ-mrs.fr
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide the reader with a uniform approach for obtaining various useful explicit upper bounds on residues of Dedekind zeta functions of numbers fields and on absolute values of values at $s=1$ of $L$-series associated with primitive characters on ray class groups of number fields. To make it quite clear to the reader how useful such bounds are when dealing with class number problems for CM-fields, we deduce an upper bound for the root discriminants of the normal CM-fields with (relative) class number one.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2001

References

[Arn] Arno, S., The imaginary quadratic fields of class number v4 . Acta Arith. 60(1992), 321334.CrossRefGoogle Scholar
[BarL] Barrucand, P. and Louboutin, S., Majoration et minoration du nombre de classes d’idéaux des corps réels purs de degré premier. Bull. London Math. Soc. 25(1993), 533540.CrossRefGoogle Scholar
[Bou] Boutteaux, G., Corps a multiplication complexe non galoisiens de degré 6 principaux. Ph.D. Thesis, Univ. Caen, in preparation.Google Scholar
[BouL] Boutteaux, G. and Louboutin, S., The class number one problem for some non-normal sextic CM-fields. To appear.Google Scholar
[CK] Chang, K.-Y. and Kwon, S.-H., Class numbers of imaginary abelian number fields. Proc. Amer. Math. Soc. 128(2000), 25172528.CrossRefGoogle Scholar
[Dav] Davenport, H., Multiplicative Number Theory. Second edition, Springer-Verlag, 1980.CrossRefGoogle Scholar
[GS] Granville, A. and Stark, H. M., ABC implies no “Siegel zeros” for L-functions of characters with negative discriminant. Invent. Math. 139(2000), 509523.CrossRefGoogle Scholar
[HH] Horie, K. and Horie, M., CM-fields and exponents of their ideal class groups. Acta Arith. 55(1990), 157170.CrossRefGoogle Scholar
[Hof] Hoffstein, J., Some analytic bounds for zeta functions and class numbers. Invent. Math. 55(1979), 3747.CrossRefGoogle Scholar
[Hor] Horie, K., On a ratio between relative class numbers. Math. Z. 211(1992), 505521.CrossRefGoogle Scholar
[Lan] Lang, S., Algebraic Number Theory. Graduate Texts in Math. 110, second edition, Springer-Verlag, 1994.CrossRefGoogle Scholar
[Lef] Lefeuvre, Y., Corps diédraux à multiplication complexe principaux. Ann. Inst. Fourier 50(2000), 67103.CrossRefGoogle Scholar
[Lem] Lemmermeyer, F., Ideal class groups of cyclotomic number fields, I. Acta Arith. 72(1995), 347359.CrossRefGoogle Scholar
[LL] Lefeuvre, Y. and Louboutin, S., The class number one problem for the dihedral CM-fields. In: Proceedings of the ICM 1998 Satellite Conference, Algebraic Number Theory and Diophantine Analysis (Gras, August 31-September 4, 1998).Google Scholar
[LLO] Lemmermeyer, F., Louboutin, S. and Okazaki, R., The class number one problem for some non-abelian normal CM-fields of degree 24 . J. Théor. Nombres Bordeaux 11(1999), 387406.CrossRefGoogle Scholar
[LO1] Louboutin, S. and Okazaki, R., Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one. Acta Arith. 67(1994), 4762.CrossRefGoogle Scholar
[LO2] Louboutin, S. and Okazaki, R., The class number one problem for some non-abelian normal CM-fields of 2-power degrees. Proc. London Math. Soc. (3) 76(1998), 523548.CrossRefGoogle Scholar
[LO3] Louboutin, S. and Okazaki, R., Determination of all quaternion CM-fields with ideal class groups of exponent 2 . Osaka J. Math. 36(1999), 229257.Google Scholar
[LOO] Louboutin, S., Okazaki, R. and Olivier, M., The class number one problemfor some non-abelian normal CM-fields. Trans. Amer. Math. Soc. 349(1997), 36573678.CrossRefGoogle Scholar
[Lou1] Louboutin, S., Majorations explicites de |L(1, χ)|. C. R. Acad. Sci. Paris 316(1993), 1114.Google Scholar
[Lou2] Louboutin, S., Lower bounds for relative class numbers of CM-fields. Proc. Amer.Math. Soc. 120(1994), 425434.CrossRefGoogle Scholar
[Lou3] Louboutin, S., Determination of all nonquadratic imaginary cyclic number fields of 2-power degrees with ideal class groups of exponents ≤ 2 . Math. Comp. 64(1995), 323340.Google Scholar
[Lou4] Louboutin, S., Majorations explicites de |L(1, χ)| (suite). C. R. Acad. Sci. Paris 323(1996), 443446.Google Scholar
[Lou5] Louboutin, S., Determination of all quaternion octic CM-fields with class number 2 . J. London Math. Soc. 54(1996), 227238.CrossRefGoogle Scholar
[Lou6] Louboutin, S., The class number one problem for the non-abelian normal CM-fields of degre 16 . Acta Arith. 82(1997), 173196.CrossRefGoogle Scholar
[Lou7] Louboutin, S., CM-fields with cyclic ideal class groups of 2-power orders. J. Number Theory 67(1997), 110.CrossRefGoogle Scholar
[Lou8] Louboutin, S., Majorations explicites du résidu au point 1 des fonctions zêta des corps de nombres. J. Math. Soc. Japan 50(1998), 5769.CrossRefGoogle Scholar
[Lou9] Louboutin, S., Upper bounds on |L(1, χ)| and applications. Canad. J. Math. 50(1999), 794815.CrossRefGoogle Scholar
[Lou10] Louboutin, S., The class number one problem for the dihedral and dicyclic CM-fields. Colloq. Math. 80(1999), 259265.CrossRefGoogle Scholar
[Lou11] Louboutin, S., Explicit bounds for residues of Dedekind zeta functions, values of L-functions at s = 1 and relative class numbers. J. Number Theory 85(2000), 263282.CrossRefGoogle Scholar
[Lou12] Louboutin, S., Majorations explicites de |L(1, χ)| (troisième partie). C. R. Acad. Sci. Paris 332(2001), 9598.CrossRefGoogle Scholar
[Lou13] Louboutin, S., Computation of L(0, χ) and of relative class numbers of CM-fields. Nagoya Math. J. 161(2001), 171191.CrossRefGoogle Scholar
[LP] Louboutin, S. and Park, Y.-H., Class number problems for dicyclic CM-fields. Publ. Math. Debrecen 57(2000), 283295.Google Scholar
[LPL] Louboutin, S., Park, Y.-H. and Lefeuvre, Y., Construction of the real dihedral number fields of degre. 2p. Applications. Acta Arith. 89(1999), 201215.CrossRefGoogle Scholar
[LPP] Lenstra, H. W., Pila, J. and Pomerance, C., A hyperelliptic smoothness test, II. To appear.Google Scholar
[LYK] Louboutin, S., Yang, Y.-S. and Kwon, S.-H., The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent ≤ 2. Preprint, Univ. Caen, November 1999.Google Scholar
[Mel] Mellin, H., Abriss einer einheitlichen der Gamma und hypergeometrischen Funktionen. Math. Ann. 68(1910), 305337.CrossRefGoogle Scholar
[MM] Murty, M. R. and Murty, V. K.. Non-vanishing of L-functions and applications. Progr. Math. 157, Birkhäuser Verlag, 1997.Google Scholar
[Mur] Murty, V. K., Stark zeros in certain towers of fields. Math. Research Letters 6(1999), 511519.CrossRefGoogle Scholar
[Odl] Odlyzko, A., Some analytic estimates of class numbers and discriminants. Invent. Math. 29(1975), 275286.CrossRefGoogle Scholar
[Oka] Okazaki, R., Inclusion of CM-fields and divisibility of relative class numbers. Acta Arith. 92(2000), 319338.CrossRefGoogle Scholar
[Rad] Rademacher, H., Topics in Analytic Number Theory. Springer-Verlag, 1973.CrossRefGoogle Scholar
[Ram] Ramaré, O., Approximate formulae for L(1, χ). Acta Arith., to appear.Google Scholar
[Ser] Serre, J. P., Minorations de discriminants. In: Collected Papers, Vol. III (1972–1984), Springer-Verlag.Google Scholar
[Sta] Stark, H. M., Some effective cases of the Brauer-Siegel Theorem. Invent. Math. 23(1974), 135152.CrossRefGoogle Scholar
[Was] Washington, L. C., Introduction to Cyclotomic Fields. Graduate Texts in Math. 83, second edition, Springer-Verlag, 1997.CrossRefGoogle Scholar
[Yam] Yamamura, K., The determination of the imaginary abelian number fields with class number one. Math. Comp. 62(1994), 899921.CrossRefGoogle Scholar
[YK] Yang, H.-S. and Kwon, S.-H., The non-normal quartic CM-fields and the octic dihedral CM-fields with relative class number two. J. Number Theory 79(1999), 175193.CrossRefGoogle Scholar
You have Access
15
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Explicit Upper Bounds for Residues of Dedekind Zeta Functions and Values of L-Functions at s = 1, and Explicit Lower Bounds for Relative Class Numbers of CM-Fields
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Explicit Upper Bounds for Residues of Dedekind Zeta Functions and Values of L-Functions at s = 1, and Explicit Lower Bounds for Relative Class Numbers of CM-Fields
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Explicit Upper Bounds for Residues of Dedekind Zeta Functions and Values of L-Functions at s = 1, and Explicit Lower Bounds for Relative Class Numbers of CM-Fields
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *